
Behaviour Modelling and

Transformations for

Context-Aware

Mobile Applications

Laura Maria Daniele

Enschede, The Netherlands, 2011

CTIT Ph.D. Thesis Series, No. 11-193

Cover Design: Giovane Moura

Cover photo: façade of Santa Maria Novella (Florence), designed by Leon Battista Alberti

Book Design: Lidwien van de Wijngaert and Henri ter Hofte

Printing: Ipskamp, Enschede, The Netherlands

Graduation committee:

Chairman, secretary: prof.dr.ir. A. J. Mouthaan (University of Twente)

Promotor: prof.dr.ir. M. Aksit (University of Twente)

Assistant Promotor: dr. L. Ferreira Pires (University of Twente)

dr.ir. M. J. van Sinderen (University of Twente)

Members: dr. P. Dockhorn Costa (University of Espirito Santo)

dr. R. M. Soley (Object Management Group)

 prof.dr. G. Engels (University of Paderborn)

prof.dr.ir. P. W. P. J. Grefen (Eindhoven University of Technology)

prof.dr.ir. C. A. Vissers (University of Twente)

prof.dr. J.van Hillegersberg (University of Twente)

CTIT Ph.D. Thesis Series, No. 11-193

Centre for Telematics and Information Technology, University of Twente

P.O.Box 217, 7500 AE Enschede, The Netherlands

ISSN 1381-3617; No. 001

ISBN 978-90-365-3204-4

Copyright © 2011, Laura Maria Daniele, The Netherlands

All rights reserved. Subject to exceptions provided for by law, no part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording or otherwise, without the prior written permission of the copyright owner. No part of this publication

may be adapted in whole or in part without the prior written permission of the author.

E-mail: info@telin.nl; Internet: http://www.telin.nl

Telephone: +31 (0)53-4850485; Fax: +31 (0)53-4850400

BEHAVIOUR MODELLING AND TRANSFORMATIONS

FOR CONTEXT-AWARE MOBILE APPLICATIONS

DISSERTATION

to obtain

the doctor‟s degree at the University of Twente,

on the authority of the rector magnificus,

prof.dr. H. Brinksma,

on account of the decision of the graduation committee,

to be publicly defended

on Wednesday, 1st of June 2011 at 14.45

by

Laura Maria Daniele

born on 20th of July 1980

in Cagliari, Italy

This dissertation is approved by:

prof.dr.ir. M. Aksit (promotor)

dr. L. Ferreira Pires (assistant promotor)

dr.ir. M.J. van Sinderen (assistant promotor)

Abstract

Today‟s panorama of service offerings is characterised by the widespread

diffusion of the Internet and Web-based technologies everywhere in

society. We are surrounded by devices that can support us in several tasks of

our every-day life, like, for example, e-readers to access books and

magazines, or mobile phones with extremely intuitive user interfaces for

browsing, checking emails, keeping in touch with colleagues and friends

through social networks, finding maps and locations, and so on. Moreover,

this daily experience would not be possible without ultra-fast networks and

wireless technologies that allow us to exchange any kind of data, anywhere,

in real time and at low-cost. In this panorama, it becomes of vital

importance for service providers to offer services that are innovative and

distinctive. On one hand, service providers have to preserve current

customers and attract new ones in order to survive in an ever growing arena

of competitors. On the other hand, service users become more and more

aware of the opportunities offered by the evolving technologies and,

consequently, more demanding and with stronger expectations than in the

past. Therefore, users expect a profusion of services wherever they are, to

support whatever they are doing, and according to their personal

preferences and needs, while providers have to create a wide range of

enriched services in a rapid, low-cost and user-centric way.

This thesis proposes a layered methodology based on behaviour modelling and

transformations for the development of context-aware mobile applications, which

are distributed applications that can provide advanced and personalised

services to their users. Currently available approaches, such as Service-

Oriented Architecture (SOA) and Model-Driven Architecture (MDA), are

used in this thesis to support such a methodology. The main objective is to

progress the state-of-the-art in model-driven development of context-

aware mobile applications by taking into account the behaviour of these

applications already in early stages of the development process. In order to

achieve this, we refine the application behaviour in several steps, from

II ABSTRACT

abstract specifications to final implementations, and develop automated model

transformations throughout these refinement steps to generate executable

models and reason about their behavioural correctness.

Acknowledgements

Like the models I talk about in this thesis always have a purpose, I strongly

believe that every person I meet in my path has a purpose in the story of my

life. It can be really difficult to figure out what this purpose is and,

sometimes, I do not know if it is even necessary to do so. What I know is

that in these four years of PhD I met a lot of people, whose purpose in my

life I already (more or less) figure out, and I would like to express my

gratitude to all of them.

First of all, I would like to thank the members of my PhD committee,

starting from the ones furthest away: dr. Patricia Dockhorn Costa, dr.

Richard Soley, prof.dr. Gregor Engels, prof.dr Paul Grefen, prof.dr. Chris

Vissers and prof.dr. Jos van Hillegersberg. It is an honour for me to have

each of you in my defense committee. Thank you for accepting the

invitation and providing me with your precious feedback to sharpen my

thesis. I really appreciate the time and effort you dedicated to my work.

I would like to thank my promotor Mehmet Aksit for his support in

these years and the freedom he gave me to carry on with my research

trajectory after moving to the Software Engineering group in the first year

of my PhD. I also would like to thank my daily supervisors, Luis Ferreira

Pires and Marten van Sinderen. I met Luis when I first came to Netherlands

in 2005 for my Master thesis as an Erasmus exchange student, I could

barely speak English at that time! From that moment, a productive

collaboration started, which became even more productive later, in

February 2007, when I got my PhD position at the ASNA goup and Marten

became my daily supervisor together with Luis. I was lucky to keep their

supervison after the ASNA dismissal and I am proud that the three of us,

despite the difficulties, managed to collaborate until today and achieve the

results presented in this thesis. Luis, thank you for believing in me since the

beginning, encouraging me to start the PhD experience, dedicating to me

your constant and patient guidance, and flooding my papers and thesis with

the ink of your famous and dreaded red pen! Marten, thank you for being

IV ACKNOWLEDGEMENTS

always positive, for your persevering encouragement to write about my

work and present it all around the world, for promoting a great atmosphere

in our working environment and organising memorable events in your

house. In this respect, my thought goes to your wife Klaire, who is simply

fantastic with me! Klaire, I really enjoyed your company in several

occasions, such as the trip to Valencia, and I always felt very welcome in

your house. Thank you for that.

 Talking about fanstastic people, I have to mention my paranymphs

Eduardo and Luiz Olavo, who have walked next to me along this path since

the beginning, witnessing every (good and bad) moment of my PhD life.

Eduardo, sharing the office with you was a great pleasure. In my mind, I

picture you working hard, listening to music with your big headphones and,

sometimes, also singing without realising that! I will certainly remember the

long and constructive conversations we had about your research or mine, in

which just by explaining the problem to the other the solution was already

much clearer! Thanks for being this great office mate and friend, always

available to listen and help whenever I needed, about work and personal

life. Luiz Olavo, spending these years with you has been so much fun! You

are such a sociable and enjoyable person, knowledgeable source of gossip,

excellent company for travelling, challenging competitor for eating…and

you are also an impressive researcher! Definitely, my PhD life wouldn‟t have

been the same without you as a friend and colleague. You are very

important to me and I know I can always count on you, thank you!

I started my PhD at the ASNA group, where I met a lot of nice people

and incredible researchers. I would like to thank all of them for the amazing

environment and the example of dedication and perseverance they offered

to me. Among them, I want to thank Patricia, who played an important role

in my achievements as a researcher. Patricia, I learned so much from our

collaboration during my Master thesis, and I always considered you as an

example to follow. When I did not know it yet, you helped me to

understand that research was the right direction for me. You motivated me

in the choice of the PhD and after four years, I can tell you, the PhD was

the best thing could happen: there is no single moment in which I regret

my choice! I am also very grateful to Ricardo, Rodrigo and Tom. Ricardo,

you are a good friend and colleague since the Erasmus experience and we

did a lot of nice things together. It is a pity that eventually you and Kasia

had to move away, but I am happy to keep the friendship of both of you

despite the distance. Rodrigo, we started the PhD together and it was so

easy to get along with you. You immediately became a very good friend of

mine. I enjoyed a lot our endless conversations about work and life, sitting

outside the Zilverling! Also, many thanks to you and Lorena for the amazing

time I had in Brazil: you made me feel at home, now I look forward to

having you both in Europe soon. And Tom, my Dutch friend (although very

 ACKNOWLEDGEMENTS V

much influenced by our “Latin” culture), many thanks for your support and

friendship in these years!

The ASNA dismissal was a big disappointment and, for some time, we

did not know what would happen with us. Later, Luis, Eduardo, Luiz Olavo

and I moved to the SE group and, fortunately, we managed to find our

place there. I would like to thank the colleagues of the SE group for helping

us in the integration process. Especially, I would like to thank Ismenia,

Ivan, and Arda. Ismenia, I enjoyed very much talking to you, sharing

opinions and exchanging experiences. Ivan, our part of the corridor was a

lot of fun because of you! Thanks for the many conversations about

research, traditions and politics in our countries (how many jokes about

Berlusconi I had to take in these years!), and cats (Ciccio Maria thanks you

for becoming the most famous cat from Sardinia!). Arda, in this last year,

when staying at the university until late for writing my thesis, I had the

opportunity to know you better. Thank you for our chats in the dark

evenings and, above all, thank you for cheering me up in the worst and most

desperate moment of my writing. I also would like to express my gratitude

to our secretary Jeanette, extremely helpful concerning bureaucratic issues,

and always sensitive to our personal problems. Thanks also to my students

Chris Weeink and Steven Bosems for their collaboration. Their final

projects contributed to the work in this thesis.

I also would like to thank the colleagues and friends of the DACS group:

Anna, Anne, Anya, Desi, Giovane, Idilio, Marijn, Martijn, Rafael, Ramin,

Rick, Stephan, Tiago and all the others, who kindly adopted me for the

coffee break! I want to give thanks especially to Anna: with the time you

became a reference point for my life in Enschede. We are a great example

of how people with different personality and origin (you, from the Dolomiti

mountains of Belluno, and I, from the Mediterranean sea of Sardinia) can

get along and become good friends (in the flat Netherlands!). And, of

course, how can I forget Desi! Thank you for your company Desi, I enjoyed

our cultural activities and the nice conversations with you. Then, I would

like to express my gratitude also to Aiko. Thanks for the amazing trip to

Venice: you gave me the opportunity to visit this city like I never did in the

past (the fanstastic hotel in Rialto helped a lot!). And thanks for teasing me

during these years! I trained myself to weigh my reactions and turn

provocative statements into constructive discussions.

In these years, I met a lot of other nice people, like Damiano,

Emmanuele, Sandro, Lilya, Elfi, and Maral. Thank you all for the nice time!

I also would like to thank Roberto (Coppolecchia) for his amazing help in

these years I spent in the Zilverling building at UT. Many thanks also to the

Italian community: Andrea, Vanessa, Diego, Jacopo (especially to you,

thanks for the support in these last months of writing), Maurizio, Raffaella,

Valentina and many others. And to my special (Erasmus) friends Ester,

VI ACKNOWLEDGEMENTS

Rafa, Steffy, Rebe, Sopa and Mariano: no matter where life brings us, we

will always be connected!

The extended Brazilian community always played an important role in

my life in Enschede: Patricia and JP, Flavia and Pablo, Ricardo and Kasia,

Eduardo and Nayeli, Rodrigo, Lisandro, Tiago and Liga, Rafael and Sanijka,

Idilio and Suen, Eduardo Z., Ricardo S., Ramon and Rita, and many others.

Thank you for the barbeques, parties, drinking nights, and all the

memorable events we had together. Above all, I would like to thank

Giovane, Luiz Olavo, Luciana and Anna Martha: you are very special to me

and I consider you my family here, grazie di tutto, vi voglio tanto bene!

Giovane, thanks a lot also for the great job you did with the cover of this

thesis, I really appreciated that!

In all these years of PhD I lived in Macandra where I had the

opportunity to meet amazing people: I would like to thank all of them for

the great time. Most of these people already left, but Juan Carlos, Mehmet,

TJ, and Paula are still there: thank you guys, it is always nice to spend time

with you. My Italian gang has a special role, namely “compare” Salvo, my

personal trainer Ruben, and the barman Stefano: you really made the

difference in my life in Macandra. I also want to thank Dana, Emilia, Kasia

(Czapinska) and Kasia (Worek) because they are very important friends to

me: you really know how to give value to friendship. And of course Uros

and Dimitrios. Dimitri, you made me laugh, so much fun and good

memories with you. What we had together was special. But you also made

me cry. And when you made me cry, it was a lot. Despite all the tears, I

wouln‟t be the person I am today without you, thank you for everything.

You are still very important to me and I am happy we can share this

moment: you are part of this! I also would like to thank your family, Lynette

and Elias for their hospitality in Greece, and Kathy and Willy for their

hospitality in UK, I had fantastic time, thank you all.

When you leave your home town and go to live abroad a lot of things

change, but not your best friends. Vale, since the trip in USA when our

friendship started, you became essential in my life. I don‟t know how you

do it, but as soon as I start talking you understand what I feel and give me

the right piece of advice. Thanks for the irreplaceable support you gave me

in these years despite the distance! Silvy, we started as inseparable volleyball

mates long time ago. Now we are not volleyball mates anymore (what a pity,

I miss playing volleyball so much!), but we are still inseparable, sharing

personal and professional achievements, as well as difficulties and

disappointments of life. I am proud of the persons we became and of our

friendship, thank you for being always there! Cri, you are my best friend

since…ever. I have difficulties to summarise what we have done together, it

is so much! Whatever we did in life, we always shared it. In these years I

spent in the Netherlands, we had daily chats on MSN, sometimes just to say

 ACKNOWLEDGEMENTS VII

hello and continue working, and often we had long conversations on Skype.

You were far away, but I felt you with me in every moment. I will never

thank you enough for who you are and what you do for me. I also would

like to thank my friends Raffa and Enrica, it was always great to see you

when I was back to Cagliari.

I want to dedicate some words also to Paolo, Barbara, Giancarlo and

Marisa. You mean a lot to me and I would like to share this important

moment with you as well. Whatever happens in life, some people are and

will always be important. I will always keep the beautiful years spent

together as precious memories in my heart.

My family is so important and special that is almost impossible to put in

words what they mean to me. First of all, I want to thank my uncles, aunts,

and cousins. Especially, I would like to thank zia Margherita and zio Felice,

who have always been special to me. I am also very grateful to Daniela and

Giuseppe, how could I have done without the strudel and speck from

Auronzo in these years! And my special thought goes to nonna Fabia, who is

not here anymore: in my mind, I picture you during my defense, sitting in

the front and with your hair fresh from the hairdresser, your beautiful

smile, and absolutely no clue of what is going on around you…but

incredibly proud and happy! Nonna Fabia, thanks for showing me the way

every day of my life.

My sisters Claudia and Marzia are amazing persons, as well as my

brothers in law Mauro and Massimiliano. And my little nephew Jacopo…he

has started a new generation in my family bringing to all of us infinite

happiness. Claudia, you are an example of loving kindness, courage,

strength and dedication to people and their problems. You are great,

humanly and professionally. During the tough time of writing this thesis,

you told me how frustrating was for you to be far away and not helpul to

me. Well, I can tell you that with your beautiful words not only you were

helpful, but essential for me to carry on and not give up. I felt your support

and love in every moment and I am extremely grateful for that. Marzia, you

also supported me in an incredible way during these years. Especially in the

darkest period, you were there to call or text me every day, checking how

how was feeling and encouraging me to go on. Also, the time I spent at your

place in Auronzo with you and Jacopo helped me a lot to overcome the sad

and difficult moment. I don‟t know what I would have done without you. I

see what you do every day, with your students, Jacopo and all the people

around you and I feel so proud, you are inspiration for my work and for my

life. Jacopo, you are too little to understand the importance of this book for

zia Laura, but it doesn‟t matter. I want you to know that I love you so much

and when I look at you my heart is full of happiness! Mauro and

Massimiliano, thank you for being part of our family, the time I spend with

you is simply fantastic and with both of you I always feel home.

VIII ACKNOWLEDGEMENTS

Finally, mamma e papà. People always ask me what I talk about with my

parents every day on Skype. And my answer is “about my day”. I tell you

how is my day at work, what I do in my spare time, who my friends are, and

so on. You know everything and everybody in Enschede, and I am happy

that I could share all this with you. You were my strength during these

years: a lot of people come and go, but you are always there. I want to thank

you for everything you have done for me in my life and dedicate this

achievement to you. I know how hard these years were for you. I could see

it everytime papà took me to the airport, looking at me leaving and trying to

hide the tears. I could understand it everytime mamma complained, after

our leaving, that the house was empty. I could feel it everytime we were

talking on Skype and Ciccio could listen to my voice without understanding

where it was coming from. But I also know that seeing me happy of my

work and my life makes you happy too…all this wouldn‟t be possible

without your infinite love and support. Grazie infinite del vostro amore, di

avermi insegnato il valore dei sentimenti genuini e degli affetti sinceri, di

avermi trasmesso l‟importanza della famiglia, di avermi dato la possibilità di

studiare, di viaggiare e di inseguire i miei sogni. Vi voglio immensamente

bene!

Laura M. Daniele

Enschede, the Netherlands, May 2011

Contents

CHAPTER 1. Introduction 1
1.1 Background .. 1
1.2 Motivation .. 3
1.3 Objectives ... 6
1.4 Approach .. 8
1.5 Scope and Non-Objectives ... 10
1.6 Structure... 10

CHAPTER 2. General Concepts 13
2.1 Model-Driven Architecture... 13
2.2 Service-Oriented Architecture .. 24
2.3 Context and Context-Awareness ... 30
2.4 Models for Application Development ... 39

CHAPTER 3. A Model-Driven Methodology 43
3.1 Basic Elements .. 43
3.2 Modelling and Transformation Approach ... 48
3.3 Interaction Patterns .. 50
3.4 Application Architecture ... 52
3.5 Methodology Overview ... 56

CHAPTER 4. Behaviour Modelling Techniques 59
4.1 Synthesis from Properties and Scenarios ... 59
4.2 Play-in Play-out .. 62
4.3 Story-Driven Modelling .. 66
4.4 Automated Verification of BPMN Processes 68
4.5 A Formal Semantics for BPMN Analysis and Execution 70
4.6 A Pattern-Based Technique from BPMN to BPEL 73
4.7 Formal Analysis of BPEL Processes using oWFN 75
4.8 Execution of ISDL Processes using BPEL ... 77

X CONTENTS

CHAPTER 5. Techniques Comparison and Selection 81
5.1 Evaluation Criteria .. 81
5.2 Language Suitability .. 84
5.3 Methodological Support .. 87
5.4 Automation .. 91
5.5 Comparison and Selection .. 94
5.6 Proposed Solutions ... 96

CHAPTER 6. Behaviour Refinement using A-MUSE DSL and ISDL 101
6.1 Running Example: Live Contacts ... 102
6.2 Service Specification ... 106
6.3 Service Design Refined Model ... 111
6.4 SS to SDRM Refinement Transformation 115
6.5 Service Design Component Model .. 125
6.6 Discussion .. 126

CHAPTER 7. Behaviour Synthesis using Transition Systems 129
7.1 Synthesis Approach ... 130
7.2 Synthesis from Scenario .. 131
7.3 Synthesis from Properties ... 140
7.4 Synthesis from Properties and Scenarios 142
7.5 Discussion .. 143

CHAPTER 8. Behaviour Refinement and Synthesis using BPMN 145
8.1 Service Specification ... 145
8.2 Service Design Refined Model ... 149
8.3 SS to SDRM Refinement Transformation 154
8.4 Service Design Component Model .. 162
8.5 SDRM to SDCM Synthesis Transformation 166
8.6 Discussion .. 173

CHAPTER 9. Case Study 175
9.1 Overview .. 175
9.2 PIM Design .. 176
9.3 Technology Selection and PSM Design .. 183
9.4 Implementation .. 186
9.5 PIM to PSM Transformation ... 187
9.6 Discussion .. 192

CHAPTER 10. Conclusions 195
10.1 General Remarks .. 195
10.2 Layered Methodology for Behaviour Modelling 196
10.3 Proper Communication between Stakeholders 198

 CONTENTS XI

10.4 Architectural Support for Context-Aware Mobile Applications 199
10.5 Automated Support for PIM Behaviour Model Transformations 200
10.6 Future work .. 201

 References 205

 About the author 217

 About the cover 219

Chapter

1

1. Introduction

This thesis proposes a layered methodology for the development of context-

aware mobile applications, which are distributed applications that can provide

advanced and personalised services to their users. In this methodology, we

model the behaviour of context-aware mobile applications in several

refinements steps, from abstract specifications to final implementations, by

guaranteeing behavioural correctness throughout these steps. Automated model

transformations are developed to guarantee this correctness and generate

executable behaviour refinements that in principle can be implemented by

using different target technologies. This chapter presents the motivation of

this thesis, discusses the main research objectives and outlines the adopted

approach.

This chapter is organised as follows: Section 1.1 provides some

background that is relevant for our research, Section 1.2 motivates the work

in this thesis, Section 1.3 outlines our main research objectives, Section 1.4

presents the approach adopted in this thesis, Section 1.5 describes the

scope of this work, and finally Section 1.6 presents the structure of this

thesis.

1.1 Background

Today‟s panorama of service offerings is characterised by the widespread

diffusion of the Internet and Web-based technologies everywhere in society

(business, government, health-care, entertainment, leisure, etc.). We are

surrounded by devices that can support us in several tasks of our every-day

life, for example, e-readers to have always access to books and magazines, or

mobile phones with extremely intuitive user interfaces for browsing,

checking emails, keeping in touch with colleagues and friends through

social networks, finding maps and locations, and so on. Moreover, this daily

experience would not be possible without ultra-fast networks and wireless

2 CHAPTER 1 INTRODUCTION

technologies that allow us to exchange any kind of data, such as audio,

video, etc., anywhere, in real time and at low-cost.

In this panorama, it becomes of vital importance for service providers,

either huge global organizations or local small business, to offer services that

are innovative and distinctive [1-3]. On one hand, service providers have to

preserve current customers and also attract new ones in order to survive

and prosper in an ever growing arena of competitors. On the other hand,

service users become more and more aware of the opportunities offered by

the continuously evolving technologies and, consequently, more demanding

and with higher expectations than in the past.

These facts lead to a new paradigm that moves the centre of information

and communication control from the providers to the users. Users expect a

profusion of services wherever they are, whatever they are doing and

according to their personal preferences and needs. Providers have to create

a wide range of enriched services in a rapid, low-cost and user-centric way.

According to this new paradigm, the services being offered by the providers

have to fulfil some important additional requirements, which we briefly

describe as follows:

 Ubiquitous: services should exist anywhere and at anytime. In other

words, services should always be available to the user, who expects

services to be accessible in any moment wherever he may be. This does

not concern the functionality of the service, but the availability of the

service to the user. Availability depends on many factors, such as the

characteristics of the user‟s device and the network. Another term used

in the literature with a similar connotation as ubiquitous is pervasive.

Ubiquitous is defined as “being everywhere at the same time,

omnipresent” [4], while pervasive as “to become spread throughout all

parts of” [5].

 Context-aware: services should be able to sense the user‟s context and, in

case of changes in this context, autonomously adapt their behaviour in

order to satisfy the user‟s current needs or anticipate the user‟s

intention. Context can refer to the user‟s device, the network

connection being used, personal user‟s information (location, activity,

health condition), or physical environment characteristics

(temperature, humidity, light). As an example of a context-aware

service, a user‟s device could sense when its user is sitting in a movie

theatre and consequently mutes itself without explicit user‟s

intervention. When the user is travelling and dinner time is

approaching, the same context-aware device could provide another

service that suggests a suitable restaurant based on the user‟s location

and his previous dining history.

 Mobile: services should be provided to mobile users. This is enabled by

the availability of increasingly powerful and versatile portable

 MOTIVATION 3

communication devices. These devices rely on the use of wireless

technologies and 3G networks, which allow users to be continuously

connected to the Internet and experience the flexibility of the Web

also on their mobile devices. In order to offer to the users this kind of

experience, services should adapt as transparently as possible to

changes in the capabilities of the communication infrastructure by, for

example, switching to a higher quality network connection as soon as it

becomes available.

 Personalised: services should allow the users to configure their own

preferences. It is interesting to investigate to which extent the user

expects to specify what the service should or should not do for each

particular situation, or whether this task should require explicit user‟s

intervention. Services should be able to enforce the user preferences,

either reacting to explicit user requests or reasoning about the user‟s

context and learning from the user‟s previous choices or behaviour.

 Composable: services should be composable, in that it should be possible

to enrich the user‟s experience by creating services as compositions of

other available services. An example of composite service in

telecommunications is the combination of voice conferencing,

messaging, secure interactive data access and location-based service. A

composite service should be assembled from generic service building

blocks offered by several partners and bundled together to form full-

service offerings.

The characteristics mentioned above are meant to reinforce each other and,

sometimes, can be overlapping. For example, ubiquity is related to the

capability of the service to be available to the user anywhere and at anytime,

while mobility is related to the capability of the user to access a service

through mobile devices and, therefore, anywhere. Thus, ubiquity and

mobility are sometimes perceived as the same requirement. However, we

could have a ubiquitous service without device mobility by positioning fixed

computers and devices anywhere in a (bounded) environment. In the rest

of this thesis, we refer to ubiquitous, context-aware, mobile, personalised,

and composable services simply as context-aware mobile services.

1.2 Motivation

In parallel to the increasing user‟s demand for innovative and distinctive

services, we are also witnessing the disruption of the traditional discrete

structure of the industry, in which companies used to focus on a well-

defined fragment of the market in order to provide a specific service.

Nowadays, new players can enter the service market and offer various

4 CHAPTER 1 INTRODUCTION

services. In the telecom market, for example, newcomers can use the

infrastructures of the traditional telecoms due to the governments enforced

liberalization, and also benefit from new technology that made service

development easier and faster. Moreover, the service‟s lifecycle has

dramatically shortened. In the past, the average time from concept to

delivery of new services was 12-18 months. We now talk about lifecycles of

weeks [1, 6]. As a consequence, service providers, either existing companies

or new competitors, have to introduce innovative and distinctive services

rapidly and at low-cost to remain competitive in this emerging market.

A representative example of this new paradigm in service offerings is

given by the telecommunications industry [1-2]. For decades, a few large

telecommunications companies have monopolised the market and

controlled the user‟s experience. Consequently, the telecommunications

world was extremely static: on one hand, the user did not have strong

requirements and was just waiting for the providers to offer a new service;

on the other hand, the technology was not evolving as fast as nowadays, and

telecom service providers did not have to introduce new services in the

market that often. In this static situation, the introduction of a new service

was slow and costly due to integration and interoperability issues in an

infrastructure that was not really designed for changes. Recently, when new

competitors started entering the market and users became more and more

demanding, it was clear that the old rigid telecommunications world had to

be replaced with a dynamic and flexible environment. Therefore, not only

telecom service providers, but service providers in any application domain,

are nowadays forced to tackle both the technological challenge arising from

the user demand of advanced and personalised services, such as context-

aware mobile services, and the business challenge of introducing new

service offerings in a rapid, low-cost and flexible way.

In order to cope with this two-fold challenge, one should look both at

the state of existing technologies that can support the development of

advanced and personalised services, and practices that can speed up time-

to-market and cut costs in the process of creating and deploying new

services. Since the technology evolves extremely fast and is mature enough

to tackle the technological challenge [7], the focus moves to the

development practices that can provide support to the business challenge.

Therefore, the question is how to use the existing technology to satisfy the

user‟s demand for service offerings and, at the same time, facilitate the

business to create these offerings. In order to do that, this work aims at

making the development process of services easier, faster, and cheaper. We

briefly identify here some requirements that such a service development

process should fulfil:

 Intuitiveness: in order to allow everybody, eventually also the users

themselves, to provide services, the service development process should

 MOTIVATION 5

be intuitively appealing. This means that the steps of the process should

be easy to follow, the language(s) used to model the service should be

appealing for the user‟s interaction (without loss of expressiveness),

and the tools simple to use. Ideally, the design of the service should be

realised by just selecting components as building blocks and tying them

together.

 Abstraction: advanced service developers may want to go into the details

of the services being developed. This can be done without loss of

appeal to intuition by dividing the development process in several

abstraction levels. In this way, the intuitively appealing development

environment mentioned above can be suitable for novices as well for

advanced users.

 Correctness: services should behave in the way they are intended to

behave. Especially in an extremely competitive market of service

offerings, correctness can speed up the process and reduce the costs of

introducing new services. Systems that do not present undesirable

behaviour can be integrated more straightforwardly with existing

services than services that are not correctly specified. This integration

also depends on other factors, such as, for example, the complexity of

the services and the integration goal. Correctness of system behaviour

should be guaranteed throughout the whole service development

process, from abstract design models to concrete implementations.

Possibly, behaviour correctness should be already assessed in early

stages of the development process, e.g., by simulating the behaviour of

the system under development before investing in its implementation.

 Agility: since speed to market is a key driver in today‟s service

development, the workload for designing, developing and provisioning

a service should be minimized to enable rapid development. This can

be done through, for example, the systematic re-use of models,

processes and code, and the automation of the development steps.

– Design for change: since the platforms on which services run are replaced

when their technology becomes obsolete or evolves, the development

process should anticipate the possibility of platform changes in the

design phase. This issue can be addressed by separating the application

functionality from the technology with which this functionality is

realised.

Currently available approaches, such as Service Oriented Architecture

(SOA) [8] and Model-Driven Architecture (MDA) [9] can be used to

support a service development process that addresses the requirements

mentioned above. For both these approaches, there are some benefits and

limitations.

6 CHAPTER 1 INTRODUCTION

SOA aims at facilitating distributed systems design through the

disciplined use of the service concept. As defined in [10], services can be

described, published, discovered and dynamically assembled for developing

massively distributed, interoperable and evolvable systems. The problem

with SOA is that it is too general: it cannot be used alone in service

development since it is just a specific architectural style that prescribes how

to build architectures by using the service concept. One could argue that

SOA is intentionally general in order to allow embedding it in a

development approach of choice. Therefore, SOA needs to be embedded in

a methodology that gives support to the whole service development process.

This support can be provided by MDA guidelines.

 MDA aims at facilitating distributed systems design through the

separation of platform-independent (PIM) and platform-specific models

(PSM) concerns, the systematic (re)use of different models at different

abstractions levels, and the use of (automatic) model transformations [9].

The problem with MDA is that in the past much attention was given to

structural aspects of the modelled applications, and less attention to the

PIM level and the behaviour of these applications. As indirect evidence of

this tendency, surveys [8] show that among the 21 diagrams offered by

UML, the structural diagrams are heavily used, while behavioural diagrams

are much less used. However, there is general consensus in MDA on the

importance of behavioural models [11] and, recently, the number of MDA

practioners that specify application behaviour at the PIM level is increasing.

Our work combines the benefits of SOA and MDA in the development

of context-aware mobile applications and services.

1.3 Objectives

This thesis proposes a layered methodology based on behaviour modelling and

transformations for the development of context-aware mobile applications, which

are distributed applications that can provide advanced and personalised

services to their users. The main objective of this thesis is to progress the

state-of-the-art in model-driven development of context-aware mobile

applications by taking into account the behaviour of these applications

already in early stages of the development process. In order to achieve this,

we refine the application behaviour in several steps, from abstract

specifications to final implementations, and develop automated model

transformations throughout these refinement steps to generate executable

models and guarantee their behavioural correctness. Particularly, the thesis

aims at providing support for the following aspects, which are schematically

depicted in Figure 1.

 OBJECTIVES 7

Layered methodology for behaviour modelling

We aim at modelling the behaviour of services from abstract design towards

implementation. In order to achive this, we propose a methodology for

behaviour modelling that is decomposed in PIM and PSM modelling

phases, as shown in Figure 1. This thesis focuses on the PIM modelling phase

highlighted in Figure 1, which is decomposed in several abstraction levels

that can be used to incrementally add technical details to the modelled

application, assess the correctness of its behaviour during early stages of the

development process, and verify whether the modelled behaviour conforms

to the user requirements.

Proper communication between stakeholders

We envision a development process that promotes a common

understanding among all the stakeholders, especially between business and

IT experts. Our methodology aims at facilitating the development of

advanced services from a technical perspective, i.e., the perspective of the

services‟ developer, and also from the perspective of other stakeholders,

such as business analysts, business managers, and even end-users. By

providing a layered methodology that is intuitively appealing and possibly

automated, we allow each stakeholder to address the (same) development

process at the right abstraction level, i.e., high abstraction level for business

people and lower abstraction level for technical developers. Therefore, we

depicted the objective of proper communication among stakeholders in

Figure 1 Objectives

8 CHAPTER 1 INTRODUCTION

Figure 1 as orthogonal to both the PIM and PSM behaviour modelling

phases of our layered methodology.

Architectural support for context-aware mobile services

Our methodology is tailored to a specific category of advanced services, i.e.,

context-aware mobile services. For this purpose, we have defined a

reference architecture that supports the general purpose functions that are

commonly used by this family of services. This reference architecture

influences both the PIM and PSM behaviour modelling phases of our

methodology. Therefore, the architectural support for context-aware

mobile applications is represented as an orthogonal objective with respect

to these phases in Figure 1. However, this does not restrict our work only to

this specific domain, since the knowledge developed in this thesis can be re-

used with some adjustments in different application domains and with

different reference architectures.

Automated support for PIM behaviour model transformations

Precise and unambiguous models and model transformations establish the

first step towards automation. An objective of our work is to automate as

much as possible the model transformations between PIM levels, as shown

in Figure 1. In order to achieve this, the thesis investigates solutions to

automate these PIM model transformations and implements some of these

solutions.

1.4 Approach

Figure 2 depicts the research approach that we have adopted to define a

layered and automated methodology for behaviour modelling and

transformations of context-aware mobile applications. This research

approach includes the following steps:

1. A literature study on general concepts and principles to be used

throughout our research, such as the principles of MDA and SOA, and

the general concepts related to the chosen application domain, namely

context-awareness.

2. The definition of a model-driven methodology that:

– separates the application development process in platform-

independent and platform-specific modelling phases;

– incorporates the application behaviour already at the platform-

independent level;

– decomposes the platform-independent level in several behavioural

refinement transformations between models at different abstraction

levels;

 APPROACH 9

– enforces reuse throughout these behavioural refinements by

identifying patterns of recurrent behaviours, related to a reference

architecture for context-aware mobile applications, in models at

different abstraction levels.

3. A survey of behaviour modelling techniques and languages that support model-

driven development, followed by an evaluation of their strengths and

weaknesses, and the selection of suitable techniques that can be used for

the purpose of this thesis.

4. The identification of the ideal set of PIM models for our layered methodology

and manual specification of these models for a design example (called Live

Contacts) on the realisation of context-aware mobile applications. The

languages used for specifying these PIM models are selected based on

the survey mentioned above.

5. The manual specification of transformations between PIM models in order to

create systematic guidelines.

6. The implementation of PIM transformations based on the guidelines

mentioned above using some transformation languages and tools.

7. The application of the proposed PIM modelling and transformations to a

PSM prototype that uses some target technologies.

Figure 2 Our research

approach

10 CHAPTER 1 INTRODUCTION

1.5 Scope and Non-Objectives

The scope of this thesis is the PIM behaviour modelling phase of a model-

driven methodology for context-aware mobile applications, which is

decomposed in consecutive behavioural refinements. The models generated

by these refinements should be taken as input in the PSM design in order to

be implemented with some specific technological solutions.

Our intention is to automate the proposed PIM behavioural refinements

by using transformations. In order to achieve this automation, we define

transformation rules based on interaction patterns that are related to a

reference architecture for context-aware mobile applications.

In this thesis we do not extensively address the PSM design and neither

do we automate the transformation from PIM to PSM. Moreover, the

emphasis is not on the specific transformation languages and engines used

to automate our transformation rules, but on the transformation rules

themselves. We do not provide transformation rules and interaction

patterns that support different reference architectures in addition to the

reference architecture for context-aware mobile applications applied in this

thesis.

1.6 Structure

The structure of the remaining of this thesis reflects the adopted research

approach as follows:

– Chapter 2 (General Concepts) introduces the general concepts and

terminology used throughout this thesis. The principles of MDA and

SOA approaches, which can be beneficially applied in the development

of distributed applications, are presented. Since context-awareness is

the chosen application domain, we also discuss the basic definitions and

related work in this domain.

– Chapter 3 (A Model-Driven Methodology) presents an overview of the MDA-

based methodology we developed in our research and describes the

SOA-based reference architecture we defined as part of this

methodology. This methodology divides the PIM behaviour modelling

phase in several levels with different degrees of abstraction. Each level is

a refinement of the previous one and adds further technical details

towards the implementation. This chapter identifies the ideal number of

models and abstraction levels that should be used in our methodology,

presents the general characteristics of these models, and discusses the

transformations between these models. This chapter also introduces the

concept of interaction pattern, which has been used to enforce reuse when

automating model transformations.

 STRUCTURE 11

– Chapter 4 (Behaviour Modelling Techniques) presents a survey of existing

behaviour modelling techniques that can be used in model-driven

development and discusses how these techniques can be positioned with

respect to the abstraction levels of our methodology.

– Chapter 5 (Techniques Comparison and Selection) defines some qualitative

evaluation criteria and compares the techniques presented in Chapter 4

with respect to these criteria. Based on this comparison, the chapter

selects three solutions that are used in Chapters 6, 7 and 8, respectively.

– Chapter 6 (Behaviour Refinement using A-MUSE DSL and ISDL) discusses a

solution that uses A-MUSE DSL and ISDL as modelling languages. This

solution focuses on the behaviour refinement transformation of an

abstract specification into an intermediate design model.

– Chapter 7 (Behaviour Synthesis using Transition Systems) discusses a solution

that uses Transition Systems (TSs) to model behaviours. This solution

focuses on the synthesis of the behaviour of an intermediate design

model into a final design model.

– Chapter 8 (Behaviour Refinement and Synthesis using BPMN) discusses a

solution that uses BPMN as modelling language. This solution focuses

on both the behaviour refinement and synthesis transformations

mentioned above.

– Chapter 9 (Case Study) applies the PIM refinement and synthesis

transformations implemented in the thesis to generate a PSM level

prototype, which is deployed on a BPEL engine and uses UDDI and

web services technologies.

– Chapter 10 (Conclusions) presents our conclusions by stressing the main

contributions of this thesis and identifying topics for further

investigation.

Figure 3 depicts schematically the structure of this thesis.

12 CHAPTER 1 INTRODUCTION

Figure 3 Structure of

the thesis

Chapter

2

2. General Concepts

This chapter introduces the general concepts and basic terminology used

throughout this thesis. The principles of MDA and SOA approaches, which

can be beneficially applied in the development of distributed applications,

are presented. Since context-awareness is the application domain we have

chosen in our research, we further introduce the basic definitions in this

domain and discuss related work in this area.

This chapter is organised as follows: Section 2.1 provides some

background on model-driven principles and concepts, Section 2.2 discusses

service-oriented architectures, Section 2.3 introduces the basic notions

underling context-awareness, and finally Section 2.4 describes the models

for application development used in this thesis.

2.1 Model-Driven Architecture

Models help us handle the complexity in the everyday life: we use models to

represent things, understand problems, communicate ideas, and memorise

concepts. Analogously, in software engineering models provide a powerful

and effective means to handle the complexity of the software life cycle [12-

14]. By using models, software developers create abstractions of (parts of)

the real system that needs to be developed (prescriptive models) or that has

already been developed (descriptive models) [15]. In any case, these

abstractions are useful to better understand the system, communicate with

other stakeholders in a productive way, and make incremental

improvements of the software product.

Some research areas in software engineering have explicitly recognized

the role that models play in the software life cycle. Model-Driven

Engineering (MDE) is based on the assumption that “everything is a

model”, in contrast to the basic principle of object technology that

“everything is an object” [16-17]. Model-Driven Development (MDD)

14 CHAPTER 2 GENERAL CONCEPTS

aims at developing models, rather than code, as the main artefacts of the

software development process, in contrast to code-centric approaches in

which systems are developed without using or maintaining intermediate

models [18-19].

Model-Driven Architecture (MDA) [9, 20] is an initiative promoted by

OMG (Object Management Group) [21] to support the realisation of the

core MDE/MDD principles according to a set of standards. MDA provides

a set of concepts and principles to guide the use of models in the

development of distributed applications, and also the technologies that can

be used to apply these concepts and principles to create real products.

These concepts and principles, such as the separation of PIM and PSM

concerns, metamodelling, and model transformations, are defined in an

OMG standard [9]. Some technologies are also defined in OMG standards,

such as, for example, UML [22], XMI [23], and QVT [24]. Some other

technologies developed in the context of MDA are not OMG standards,

such as ATL [25] and Ecore [26]. MDA concepts, principles, technologies

and methodologies are represented in Figure 4, which shows that the MDA

concepts and principles are supported by the MDA technologies, which are

applied in the MDA-based methodologies, which are influenced by the

MDA concepts and principles.

Although MDA provides concepts, principles and technologies, it

intentionally does not prescribe any particular development methodology. A

development methodology consists of the set of activities, logical and

temporal dependencies between these activities, roles that perform these

activities and products that are artefacts of these activities, which are all

involved in the development process of a distributed application [27]. Since

Figure 4 MDA overview

 MODEL-DRIVEN ARCHITECTURE 15

OMG did not want to impose a specific way to develop products on its

members, vendors are left with the freedom to apply the MDA standards in

combination with their own preferred methodologies. These MDA-based

methodologies can be driven by several factors, i.e., business strategies,

domain requirements, market demands, technical goals, and so forth. In any

case, as depicted in Figure 4, these methodologies lead to products that are

strongly influenced both by the MDA concepts and principles, and by the

MDA technologies. Consistently with most of the literature, we use the

terms MDE and MDD when the MDA concepts and principles are applied

with an MDA-based methodology to the development of software

(distributed) systems. There is some confusion in the literature and in the

Internet about the precise meaning of these terms. This confusion is

augmented by the use of more acronyms, such as Model-Driven Software

Engineering (MDSE) and Model-Driven Software Development (MDSE)

[28-30]. We refrain from discussing this terminology any further, since

such a discussion falls out of the scope of this thesis.

In the following Sections we discuss the most relevant MDA principles

and concepts used throughout this thesis, namely separation of concerns,

metamodelling, model transformations, reuse, automation and execution.

2.1.1 Separation of concerns

Distributed applications should be developed according to a systematic

process, which can help master the complexity of these applications, speed

up their time-to-market, and decrease their development and maintenance

costs [9]. As promoted by MDA, a way to achieve these results consists of

separating the design of the following levels of models:

1. computation independent models (CIMs), which consist of business models

that describe an application‟s requirements,

2. platform-independent models (PIMs), which consist of models that describe

an application abstracting from the technological details related to the

use of a specific technological platform, and

3. platform-specific models (PSMs), which consist of models that describe the

application according to the technological platform chosen to

implement the application.

The CIM requirements should be traceable to the PIM and PSM constructs

that implement them, and vice-versa [9]. In other words, MDA promotes

the design of the application‟s functionality and behaviour independent

from the technology used to implement it. In this way, technology

evolution does not affect the PIM design, which can still be reused with

other specific platforms in other PSMs.

The notion of PIM and PSM is not absolute, but relative to the concept

of platform itself. In order to refer to platform-independent or platform-

16 CHAPTER 2 GENERAL CONCEPTS

specific concerns, one first needs to define what a platform is, i.e., which

technological and engineering details are irrelevant in a particular context

with respect to particular design goals [27, 31]. For example, for

distributed applications a model can be considered a PIM when it does not

prescribe a particular choice of middleware technology. Middleware

technologies, such as, for example, CORBA [32] and Web Services [33] are

infrastructures that facilitate the development of distributed applications by

implementing common functionality that can be easily reused, and

abstracting from implementation details, such as network technologies,

programming languages, operating systems and hardware architectures.

Therefore, a specific middleware technology can be considered as a

platform to realise distributed applications. When a decision is made to use

a particular middleware, the PIM model is transformed to a PSM model

that uses the constructs of this middleware. However, this PSM model can

be considered as a PIM, for example, with respect to the target operating

system and hardware architecture.

2.1.2 Metamodelling

Another important MDA practice consists of representing the models

created in the design by using some commonly agreed language in order to

make these models available for all the stakeholders involved in the design

process. Therefore, a requirement for models consists of promoting

common understanding in enterprises between people with different skills,

knowledge and background, such as business engineers and IT developers.

Models are often used for discussion, communication and analysis, possibly

not only within a single organization but also across organizations such as in

the case of multi-organizational projects. Models are also used for design,

validation, implementation, testing, management, and so forth. In any case,

models always have a purpose. In this thesis, we start from the following

definition of model:

A model is an abstraction of a real world system defined using a notation that suits

the purpose of the model.

The syntax is the notation used to represent a language. The concrete syntax is

the symbolic notation of the language, while the abstract syntax is the

conceptual notation of the language. Figure 5 shows an example in UML,

where the concrete syntax of the class element is represented by a rectangle

with compartments, and the abstract syntax consists of a conceptualization

of the class element itself, i.e., something which can have attributes and

operations, and can be related to other classes by using associations, etc.

Definition 1 Model

 MODEL-DRIVEN ARCHITECTURE 17

language UML

concrete syntax

abstract syntax class

A metamodel is a particular type of model used to represent the abstract syntax of a

language in a way that is machine readable and, therefore, can be manipulated by

computerized tools.

The OMG has defined metamodels as “models of models”. According to

this general definition, we can have different types of metamodels

depending on the purpose of the model that they describe. Although we

embrace this definition, in this thesis we usually refer to the term

metamodel as the specific type of model that describes the abstract syntax

of a language. The OMG has also defined a standard language for expressing

metamodels, which is the Meta Object Facility (MOF) [34]. The left part of

Figure 6 shows the relations between a model, the language used to

represent this model, the concrete and abstract syntax of this language, and

the metamodel that describes the abstract syntax of this language.

Figure 5 UML class

example: concrete

syntax versus abstract

syntax

Definition 2 Metamodel

Figure 6 Models,

languages, syntax,

semantics and their

relationships

18 CHAPTER 2 GENERAL CONCEPTS

Although necessary, it is not sufficient to have some syntax that represents

the notational aspects of a language. As shown in the right part of Figure 6, a

language should also have semantics, which describes the meaning of the

language. For example, in the arithmetic language the syntactic symbol “+”

is semantically associated with the operation of addition. The semantics can

have an informal notation, for example, natural language. However, this

makes the semantics ambiguous and can lead to misinterpretations.

Therefore, it is advisable to have a formal notation for the semantics based

on some mathematical theory, such as, for example, denotational semantics,

operational semantics and so forth. When a language is endowed with

precise and unambiguous, i.e., formal, definitions of syntax and semantics,

we talk about formalism. Examples of formalisms are process algebras,

Linear Transitions Systems (LTS), and Petri Nets (PN). Based on [35], we

define formalisms as follows:

A formalism F, or formal language, is a language consisting of a formal syntax L,

a formal semantics S, and a mapping M : L → S that relates the syntax L to the

semantics S.

2.1.3 Model transformations

Model transformations play a central role in MDA approaches. Depending

on the type of models that are involved, these transformations can have

different purposes, which lead to different benefits. For example, one could

be interested in transforming an abstract specification in a more detailed

design model. In this case, the transformation is called refinement. One could

also be interested in transforming a design model represented in some

modelling language into an implementation model written in some

programming language. In this case, the transformation is called code

generation. In any case, a model transformation involves a source model and

a target model.

A model transformation consists of the generation of a target model m
T

(F’)

represented in a formalism F’ from a source model m
S
(F) represented in a

formalism F.

When the formalism used to represent the source model is the same of the

formalism used to represent the target model (F = F‟), we talk about

endogenous transformations. Vice-versa, when this formalism is different (F

≠ F‟), we talk about exogenous transformations [15, 36]. A further

distinction is based on the abstraction level of the source and target models.

A transformation that converts between models at the same abstraction

level is a horizontal transformation. In contrast, a transformation between

Definition 3 Formalism

Definition 4 Model

transformation

 MODEL-DRIVEN ARCHITECTURE 19

models at different abstraction levels is a vertical transformation. While it is

objective to evaluate endogenous versus exogenous transformations, it may

be subjective to evaluate horizontal versus vertical transformations, since

this latter evaluation relies on the ability of one to compute the abstraction

level of the source and target models. Figure 7 shows some examples of

endogenous/exogenous and horizontal/vertical transformations, in which

m
S
(F) m

T
(F’) denotes that m

S
(F) is the source model in a formalism F,

m
T
(F’) is the target model in a formalism F‟, and is the transformation

from source to target model.

The endogenous/exogenous and vertical/horizontal dimensions are

orthogonal [15]. The transformations T
1,2

 and T
1‟,2‟

 in Figure 7 are

endogenous vertical transformations. An example of this transformation is

the model refinement mentioned above, which converts from an abstract

model to a more detailed model in the same language. The transformation

Figure 7 Examples of

model transformations

→
T

S,T

→
T

S,T

→
T

S,T

→
T

S,T

20 CHAPTER 2 GENERAL CONCEPTS

T
1,2‟

 is an exogenous vertical transformation. The code generation

mentioned above is an example of this transformation. The transformations

T
1,1‟

 and T
2,2‟

 in Figure 7 are horizontal transformations. Moreover, when the

formalisms F and F‟ are different, T
1,1‟

 and T
2,2‟

 are exogenous horizontal

transformations. An example is the language migration, which converts a

model in one language to an equivalent model in another language, e.g., for

analysis purposes. In contrast, T
1,1‟

 and T
2,2‟

 are endogenous horizontal

transformations when they convert between models based on the same

formalism. An example is refactoring, which changes the internal structure of

a model but not its external functional behaviour in order to improve some

non functional aspects, e.g., readability or maintainability of the code.

A further classification is based on the way the transformation itself is

defined. When one defines what the transformation does in terms of

relations between elements of the source and target models, we talk about

descriptive or declarative transformations. When one defines how the

transformation is accomplished in terms of explicit steps, we talk about

prescriptive or imperative transformations. Finally, transformations can be

manual or automatic. Section 2.1.5 elaborates on the automation of model

transformations.

2.1.4 Reuse

In order to increase the efficiency of the design process, both in terms of

quality and costs, another important practice consists of collecting the

knowledge acquired in some design steps and reusing it in other steps of the

same design process and/or in the design of new applications, instead of

creating these applications from scratch. In this way, it is possible to reuse

best practices when creating families of applications, such as, for example,

context-aware mobile applications in the case of this thesis.

The practice of collecting design knowledge during the design process in

order to create reusable designs is called design for reuse. The practice of

reusing existing design knowledge previously captured in other (steps of)

design processes is called design with reuse [31]. In any case, reuse is possible

at different levels in the design process, starting from models that capture

core business processes and domain concepts, to code that implements

specific designs solutions. Using the same principles as applied by

manufacturers of hardware products, software product lines [37] can be

created, illustrating reuse through a shared set of software assets and using a

common means of production.

Since model transformations are essential in any model-driven

development process, one should capture these transformations explicitly

and reuse them consistently across solutions. Especially because defining a

transformation is a time consuming task, which sometimes requires

 MODEL-DRIVEN ARCHITECTURE 21

specialized knowledge of the application domain and the implementation

technologies. In this way, it is possible to define standard transformations

that make use of recurring patterns, which can be consistently applied,

validated, and automated [38].

2.1.5 Automation

Models based on formal languages are machine readable and, therefore,

constitute the basis for automation. Automation can be realised for several

purposes, such as (1) analysis to check whether a model satisfies some

desired properties, (2) validation to check models against requirements, (3)

simulation to execute models in early stages of the development process,

(4) transformation to generate more detailed models or executable code

from abstract models, (5) testing to generate and execute test cases on the

final implementation, (6) metadata management to handle relations

between models and metadata, and so forth. A lot of effort in MDA is spent

on the automation of model transformations.

Since model transformations can be applied in several steps in model-

driven development processes, from initial analysis to code generation, the

automation of these transformations can produce important benefits to the

process, such as increasing the speed and enforcing the correctness of the

implementations. Figure 8 shows the standard approach used by MDA tools

to automate model transformations. Elements of this approach are:

1. a source metamodel,

2. a source model instance of the source metamodel,

3. a target metamodel,

4. a target model instance of the target metamodel, and

5. a transformation definition instance of a transformation language.

A transformation engine, which is instructed with the transformation

definition, takes as input the source metamodel, the target metamodel, and

the source model. According to the transformation definition, this engine

generates a target model, which conforms to the given target metamodel.

22 CHAPTER 2 GENERAL CONCEPTS

OMG has defined a standard for model transformation languages called

Query/View/Transformation (QVT) [24]. In order to handle declarative and/or

imperative transformation definitions, the QVT standard defines different

languages according to a layered architecture. In this architecture, QVT

Relations and Core are declarative languages that allow the definition of

transformations as declarations of relations among source and target

metaelements. The so called Operational Mappings extends the Relations

language with imperative OCL constructs. The Relations language has found

the largest tool support, such as, for example, in the Medini QVT engine

[39]. The ATL transformation language [25], which is inspired by the QVT

standard, is a hybrid language that provides a mix of declarative and

imperative constructs. The ATL language is supported by an ATL engine.

2.1.6 Behaviour Modelling and Execution

Considerable effort has been spent by the MDA community to model

transformations meant to support application development [11]. However,

as shown in the left of Figure 9, most of these transformations convert PIMs

that describes an application structure into PSMs that implement this

structure as code skeletons in some programming language. In this way,

application behaviour is not defined at the PIM level and has to be

incorporated at the PSM level by adding ad hoc hand-written code to the

final implementation. Preferably, application behaviour should be

incorporated to the application structure already at the PIM level of the

design process and possibly refined in several PIMs that gradually add

technical details to the design before generating the final code. This is

shown in the right part of Figure 9.

Figure 8 Automatic

model transformations

 MODEL-DRIVEN ARCHITECTURE 23

Although there is general agreement in the MDA community about the

importance of behaviour modelling, there is a lack of a commonly accepted

modelling language to adequately represent behaviour [11]. For example,

UML is a widespread standard that allows the representation of behaviours

as sequence diagrams, statecharts and activity diagrams. However, UML

lacks a formal semantics [35, 40], which is an essential part of a language as

previously explained in Section 2.1.2. This issue is further discussed in

Chapter 4, which is dedicated to the state-of-the-art in behaviour modelling

languages and techniques. The investigation of such languages and

techniques is the starting point of our research towards the development of

a methodology for behaviour modelling.

Model execution at the PIM level is a desirable feature in an MDA

development process. When talking about generation of executable models,

we usually refer to the executable code at the PSM level that constitutes the

final implementation of the application. However, when developing

complex applications, it is advisable to have executable models in early

stages of the development process before investing extensively in

implementation [35]. Therefore, as shown in Figure 10, one should have

Figure 9 Behaviour

modelling

24 CHAPTER 2 GENERAL CONCEPTS

executable models already at the PIM level before generating executable

code at the PSM level.

PIM models can be executed in different ways such as, for example, test

and debug to check whether there are errors in our models, simulation of

application behaviour, validation of this behaviour against requirements,

verification of syntactical correctness in models at different abstraction

levels, and so forth. Basically, when executing models at the PIM level we

want to make sure that our application behaves in the way we have designed

it before moving to the next development step. Chapter 4 further

elaborates on behaviour modelling languages that can be used to create

executable models at the PIM level.

2.2 Service-Oriented Architecture

Service-orientation is a paradigm for the development of massively

distributed, interoperable, and evolvable systems that considers services as

Figure 10 Behaviour

execution

 SERVICE-ORIENTED ARCHITECTURE 25

fundamental elements, or building blocks [41]. Services are self-contained

and modular components that can be described, published and discovered

by using general agreed mechanisms [42]. Service-Oriented Architecture

(SOA) [10, 43] is an architectural style based on the service-orientation

principles, such as, for example, reuse of application functionality

(reusability), abstraction from the way this functionality is implemented

(abstraction), minimisation of interdependencies between units of

functionality (loose coupling).

 Figure 11 depicts a typical scenario in service-oriented architectures

[42]. In this scenario, services are offered by service providers and are

described in service descriptions. These descriptions abstract from

implementation details and are used to advertise the service capabilities,

interfaces, behaviour and quality. Service providers can publish the

description of their services in a service registry. In this way, services are

available for discovery to service consumers, who can consequently select and

invoke the desired service based on the information of the description and

without being aware of the details of the service implementation.

By prescribing the use of service interfaces as the only information

necessary to communicate, SOA provides a means to abstract from

implementation issues and to build application functionality independent

from the specific technology used to realise this functionality. This also

provides a means to generalise service logic and make it available for reuse,

not only within an organization but also across multiple organizations,

instead of rebuilding dedicated functionality every time.

Before the advent of service-orientation, distributed applications were often

built in a dedicated fashion to address requirements one at a time [43]. In

this way, the application only needed to fulfil a limited set of requirements

and could benefit from the latest technology advancements. However, when

significant changes were necessary due to new user demands or technology

evolution, the solution was to build new applications from scratch. This led

Figure 11 SOA overview

26 CHAPTER 2 GENERAL CONCEPTS

to redundancy of the implemented functionality, and consequently in

development effort and expenses. Moreover, this resulted in

interoperability issues among applications built with different technologies.

The left part of Figure 12 shows three (parts of) applications built with

different technologies T
1
, T

2
 and T

3
. The integration of these applications is

complicated since each pair of incompatible technologies has to be

connected trough a dedicated gateway, i.e., G
12

, G
13

 and G
13

 in Figure 12.

This way creates a huge amount of interconnections, which is not desirable.

In contrast, by wrapping at design time each application in a commonly

agreed description that abstracts from any specific technology, i.e., W
1
, W

2

and W
3
 in Figure 12, interoperability issues are definitely reduced. This is

the context in which service-orientation was conceived.

Service-orientation is not a completely new paradigm in the IT history,

since it incorporates elements from past paradigms. For example, SOA

principles like service reusability, service abstraction and service

composability, have been inspired by object-orientation. In a sense, SOA

represents an evolutionary step, which shifts the application of modularity

from a small scale to the potential modularization of the enterprise [43].

 Although SOA is an architectural style independent from specific

implementations, SOA is usually associated and sometimes equated to Web

services [33]. The Web services technology has influenced service-

orientation principles and a lot of vendors have implemented their SOA

solutions by using this technology. However, SOA can be realised with any

other technology for distributed systems, such as, for example, CORBA

[32], Java RMI/EJB [44] and Jini [45].

In the following Sections we discuss the most relevant SOA principles

used throughout this thesis.

Figure 12 Service

interoperability:

dedicated applications

versus SOA-based

applications

 SERVICE-ORIENTED ARCHITECTURE 27

2.2.1 Service orientation principles

Standardised descriptions

In order for services to communicate by making use of each other‟s

functionality independently of the underlying implementation, it is

necessary to describe these services in a standard way, i.e., in a way that can

be unambiguously understood by all involved parties. Standardised

descriptions (or contracts) state the purpose and the expected result of a

service, its inputs, outputs, exchanged message types, operations, and

address, and also service quality attributes, such as costs, performance,

security, availability, and so forth [10]. In this way, service consumers know

where and when to find a specific service, how to request and access it, and

what level of Quality of Service (QoS) is guaranteed [46].

Loose coupling

Coupling measures the degree of interdependence between two entities,

and loose (minimised) coupling makes these two entities as little as possible

dependent on each others. In this way, each entity is defined as maximally

self-contained, with simple message exchange patterns to allow access to

the functionality exposed to the outside world (service interface).

Therefore, loose coupling is a desirable property. Loose coupling can be

achieved by eliminating unnecessary dependencies between entities and

reducing the number of necessary dependencies [47].

Abstraction

The abstraction principle aims at hiding as much as possible the underlying

details of a service and exposing to the external environment only the

essential information necessary to make use of this service. This principle is

tied to the fact that services in SOA make sense only from the perspective

of what they provide or use without any mentioning of the internal details

of how the service itself is implemented. In this way, a service can maintain

awareness of other services abstracting from their irrelevant details.

Reusability

Design for reuse guarantees that services can realise some recurring

functionality in multiple contexts of use within a single application or across

a family of applications. A way to achieve reuse in the design consists of

identifying common behaviour in different parts of the system and

generalise this behaviour as services to make it usable by other (parts of)

systems.

28 CHAPTER 2 GENERAL CONCEPTS

Composability

Services built as self-contained units of logic can be considered as building

blocks for service composition. In principle, if one service solves a well-

delimited problem, several services can be composed to solve a more

complex problem. Service composition can take place at design-time or

runtime. At design time, it allows the service developer to create services

from existing ones (reuse of functionality), while at run-time it supports the

on-demand request of end-users for personalised services. The services

resulting from compositions may be used directly by service consumers, or

can be also used by service aggregators as building blocks in further service

compositions [10].

Interoperability

When using a specific technology to implement SOA, for example, web

services, the principles mentioned above all support interoperability,

although from different perspectives. Standardised service descriptions

provide commonly agreed means to interoperate. Loose coupling promotes

independency of services. Abstraction from implementation details reduces

integration issues due to technology evolution. Reusability provides a means

to share knowledge and functionality in a systematic way. Finally,

composability uses services as first class elements to achieve complex

common goals.

2.2.2 Concept of service

In the scope of this thesis we consider different perspectives of the service

concept. These perspectives depend on the abstraction level at which we

consider the system that we want to develop.

Figure 13 depicts a system and its environment. The environment

consists of other systems capable to interact with our system, i.e., end-users

or other applications. To simplify the discussion without loss of clarity, we

assume that the environment coincides with the user. A system can have

different types of users, such as managers, analysts, designers, developers,

end-users, and so forth. In Figure 13 we consider the integrated perspective

of the system [48], i.e., regardless of its internal structure, and we define a

service as “the external observable behaviour provided by the system as a

whole”. In other words, we are only interested in the service provided by

the system to the environment, but not in how this service is provided.

From this integrated perspective, there is a duality between the concepts of

application and service. The application is the software system that offers a

service to its environment (i.e., what the system is), and the service is the

offered functionality (i.e., what the system does). Although these are two

different concepts, at this level we can use them interchangeably without

 SERVICE-ORIENTED ARCHITECTURE 29

loss of clarity. For example, this is the case of context-aware mobile

applications, which offer context-aware mobile services to their users.

In Figure 14 we consider the distributed perspective of the system [48], in

which we are not only interested in the service provided by the system to

the environment, but also in how this service is provided. Therefore, we

consider the system as a composition of interacting parts, which we call

(application) components. According to SOA, these components make use of

each other‟s services to cooperate in order to support the goals of the

application. In principle, each component in Figure 14 can expose its

service to the environment independently of the specific application for

which it was developed.

We can make the notion of system and service recursive by further

decomposing each component and its service of Figure 14 in more refined

components. This decomposition usually stops when the final

implementation of the system is reached.

Figure 13 Integrated

perspective: service as

the observable

behaviour of a system

Figure 14 Distributed

perspective: services as

interactions among

components to achieve

the goals of the

application

30 CHAPTER 2 GENERAL CONCEPTS

2.2.3 Discussion

Service-orientation principles have been adopted extensively in both

academia and industry. However, these principles themselves are not

enough to build applications since they should be supported by a design

approach. SOA does not prescribe such an approach. Consequently, some

vendors, especially when facing budget and time constraints, build directly

implementations without proper application modelling [43]. This

introduces the risk of generating accidental behaviour, namely something

that the application is not expected to do. Since this accidental behaviour

can be detected only at run-time, changes have to be made on the

implementations, which can be troublesome. In contrast, with a proper

application design, accidental behaviour can be avoided or at least reduced.

In order to exploit the full potential of service-orientation, SOA principles

should be incorporated in an appropriate design approach. This motivates

the use of SOA in this thesis in combination with an MDA-based design

methodology, which can provide the missing methodological support in

service-orientation when building architectures based on services.

2.3 Context and Context-Awareness

In this thesis we start from the definition of context given in [49], which is

the following:

Context is a collection of interrelated conditions in which something exists or

occurs.

This definition implies that we always consider context as a set of

conditions associated with a subject, which is something that “exists or

occurs”. In our models, a subject of context is called an entity. Although the

concepts of entity and context are strongly tied, these concepts are

fundamentally different. Actually, context is what can be said about an

entity in its environment, which implies that context does not exist by itself

[50]. The context of an entity is characterised by a “collection of

interrelated conditions”, which we call context conditions. Considering the

context of a person (entity), examples of these conditions are the person‟s

geographical location, conditions of the person‟s physical environment,

such as temperature, humidity, light, etc., or the person‟s vital signs, like

heart beat and blood pressure. Together, these context conditions form the

person‟s context.

The context conditions mentioned above refer to real world phenomena

that cannot be directly manipulated and used by applications as digital

Definition 5 Context

 CONTEXT AND CONTEXT-AWARENESS 31

information. Therefore, it is necessary to represent these context

conditions in terms of information that can be handled and interpreted by

applications. We call this information context information and we define it by

rephrasing the most referred definition of context in the context-awareness

literature [51] in following the way:

Context information is any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that is considered

relevant to the interaction between a user and an application, including the user

and the application themselves.

Context-aware applications are intelligent applications that can monitor the

user‟s context and reason about this context in terms of context

information. In case of changes in this context, these applications can

consequently adapt their behaviour in order to satisfy the user‟s current

needs (reactive behaviour) or anticipate the user‟s intentions (proactive

behaviour). For example, a context-aware mobile phone could be able to

know when its user is sitting in a movie theatre and consequently mutes

itself without explicit user‟s intervention. When the user is travelling and

dinner time is approaching, the same context-aware mobile phone could

suggest a suitable restaurant based on the user‟s location and his/her

previous dining history. Anywhere and anytime, context-aware mobile

applications should be able to provide relevant services to their users. The

services offered by context-aware applications are called context-aware services.

Since the design of context-aware applications relies on a variety of

components that are distributed over the environment, we can define a

context-aware application as follows [50]:

A context-aware application is a distributed application whose behaviour is affected

by its users’ context.

Figure 15 summarises the concepts defined above and shows how these

concepts are related to each other.

Definition 6 Context

information

Definition 7 Context-

aware application

32 CHAPTER 2 GENERAL CONCEPTS

Figure 15 depicts a user in the real world. This user may provide some input

events to a context-aware application through a graphical interface. This

user has a context, which consists of personal conditions (e.g., location,

blood pressure and heart beat) and environmental conditions (e.g.,

temperature and humidity). These context conditions are captured by

sensors deployed in the user‟s environment, such as, for example, a GPS

device integrated in the user mobile phone or a wearable device that can

monitor the user‟s vital signs. Alternatively, some context conditions can be

obtained from websites, such as, for example, locations from

http://maps.google.com, and weather conditions from

http://www.buienradar.nl. In any case, context conditions cannot be used

directly as they are captured, but they need to be represented in a format

that complies with an agreed context information model with specific

values in order to be used as inputs by context-aware applications. The

accuracy with which the context information values used by applications

reflect the real context conditions captured by sensors or provided by web

services is called quality of context. The more these values are close to the

real context conditions, the better the quality of context is.

Figure 15 also shows that a context-aware application consists of

application components, which interoperate in order to achieve some

common goal. This common goal is realised in Figure 15 by a context-aware

service, which is delivered by the context-aware application to its user.

2.3.1 Context-aware middleware platform

Because of stringent time-to-market requirements, it is not feasible to build

dedicated context-aware applications for each user‟s preferences and needs,

since in this case application development would be time consuming and

costly. In contrast, with a proper middleware platform, generic functions

Figure 15 Context-

aware applications and

services overview

 CONTEXT AND CONTEXT-AWARENESS 33

can be made available and reused in various context-aware applications

without developing them from scratch. Depending on the specific

application to be developed, this middleware platform can be configured by

implementing functions that are not worth generalizing, since they are too

specific to be used by other applications. As depicted in Figure 16, on top of

this middleware platform, a context-aware application should also offer

specific functions implemented by application-specific components.

According to the most relevant literature in the domain of context-aware

applications [50, 52-54], the following three main aspects can be

generalised in our middleware platform:

1. context, which concerns context gathering issues, such as retrieving

context conditions from sensors or web services and eventually

aggregating these values in higher-level context information;

2. reaction, which concerns the execution and delivery of services as

reactions to context changes in the user context or user input events;

3. logic, which concerns the application behaviour that controls the aspects

mentioned above.

Context

Context information can be raw information collected by sensors, e.g.,

location information from a GPS device, or aggregated information

collected by several sources, e.g., user‟s activity information (for example,

„in a meeting‟ activity inferred from GPS locations and proximity with other

people). In order to provide raw and aggregated context information, the

Figure 16 Context-

aware middleware

platform

34 CHAPTER 2 GENERAL CONCEPTS

sources of context information, which we call context sources, should be

hierarchically organised.

Some work in the literature has dealt with such a hierarchical

organization. For example, [51] introduced the concept of widgets, which

encapsulate sensors that capture raw context information, and the concepts

of interpreter and aggregator, respectively, to interpret context information

and infer information from several widgets. Similarly, [55] proposed a

context gathering layer consisting of sensors, interpreters and aggregators.

In [54] the concepts of context provider and synthesizer are introduced. In

this thesis, we have adopted the internal hierarchy proposed in [50] based

on context sources and managers, which is depicted in Figure 17.

The context sources in Figure 17 encapsulate single domain sensors, such as

a wearable device that monitors the user‟s blood pressure. Context

managers are able to combine the context information acquired by multiple

domain context sources, such as the user‟s blood pressure and heart beat,

to obtain aggregated context-information, such as the user vital signs in

Figure 17. The hierarchy of context information processing is recursive in

the sense that the outcome of context managers can become input to

higher level context managers for further processing. For example, the

user‟s vital signs, which are aggregated by the Context manager1 in Figure 17,

are then combined with the environmental temperature by the Context

manager2. As a result of this hierarchy, a directed acyclic graph is created

Figure 17 Context

aspects

 CONTEXT AND CONTEXT-AWARENESS 35

where the initial nodes are always context sources and the final nodes may

be either context sources or managers.

There are two ways to provide context information to a context-aware

application: event-based, i.e., when relevant changes occur in some context

information attribute and these changes are notified by context sources or

managers, and query-based, i.e., when some specific context information

attribute becomes relevant at some point in time, context sources or

managers can be directly queried to obtain the current value.

Reaction

Context-aware applications are characterised by reactive behaviours. An

example of reactive behaviour is muting the user‟s mobile phone when the

user is sitting in a movie theatre. Actions represent application reactions to

context information changes, and these reactions may be the invocation of

any service internal or external to the application, such as the generation of

a signal, the delivery of a notification or a web services request. Since it can

be beneficial for flexibility and reuse reasons to have a hierarchical

organization also of reaction aspects, we have adopted the internal hierarchy

proposed in [50] based on action resolvers, providers and implementors,

which is depicted in Figure 18.

The action resolver component in Figure 18 resolves compound actions

into indivisible units of action purposes, such as sendSMS and makecall. These

action purposes are defined by action provider components and describe an

intention to perform an action with no indication on how and by whom.

The responsibility of the action implementor components in Figure 18

consists of defining various ways of implementing a given action purpose.

For example, the action makeCall in Figure 18 may have two different

implementations supported by different telecom providers.

36 CHAPTER 2 GENERAL CONCEPTS

Logic

The logic aspect constitutes the core of a context-aware application since it

determines how an application should behave upon the occurrence of

context changes to generate proper actions. Therefore, the application logic

is responsible for coordinating the context gathering and reaction execution

aspects described above. In addition, the application logic is responsible for

coordinating any other components, such as the discoverer component

introduced in [51] to register the capability of context components, i.e.,

widgets, interpreters and aggregators, and action components, i.e., services

that execute actions on behalf of the application.

Concerning some related work that has dealt with the application logic

aspect in the context-awareness domain, in [51] an application is defined as

the components that makes use of all the other components in the

framework (widgets, interpreters, aggregators, services and discoverers). In

[55] a layer of the proposed architecture is dedicated to implement the

application logic, which organises the underlying layers dedicated to context

management and query issues. In [54] applications consist of context

consumers whose behaviour is designed by using rule-based approaches or

learned by the applications themself by using some machine learning

approach. In [50] the use of the Event Control Action (ECA) architectural

pattern [56] is proposed, in which an Event module is dedicated to context

concerns and to provide the application with events that model contextual

changes in the application or its environment, a Control module is dedicated

Figure 18 Reaction

aspects

 CONTEXT AND CONTEXT-AWARENESS 37

to observe events and to trigger actions as a consequence to these events,

and an Action module is dedicated to perform the actions triggered by the

control module. The control module constitutes the application logic and is

implemented by using a rule-based approach.

How the application logic behaviour should be represented at a

platform-independent level by using an appropriate modelling language,

and realised with proper technologies at the platform-specific level by

preserving behaviour correctness and consistency, is the main topic of this

thesis. We aim at realising this application logic in a way that combines the

benefits of MDA, which gives foundational methodological support to

model application behaviour, and SOA, which gives architectural support to

execute this behaviour.

Figure 19 shows an overview of the context, logic and reaction aspects as

used in the remainder of this thesis.

Figure 19 Context, logic

and reaction aspects

overview

38 CHAPTER 2 GENERAL CONCEPTS

2.3.2 Context modelling

In order for the components that manipulate context information to

cooperate, a context-aware application needs to rely on a context model

that defines the structure of this context information. Therefore, we define

a context model that represents the relevant context conditions of entities

in the application‟s universe of discourse. In the sense of [50, 57], we

consider context models as conceptual models of context that represent a

given subject domain in an abstract way, independent of specific design and

technological choices. When we define a conceptual model of context, we

abstract from any system design and technological detail, such as the way in

which context is sensed, provided, processed and used.

Context models provide us with a conceptual foundation for the

development process of context-aware mobile applications. Particularly,

context models allow us to provide interoperability among application

components distributed in the system for what concerns context

information. Each of these components realises specific parts of the

application logic and, in order to support the goals of the application, it has

to interoperate with other components. Our context model should provide

concepts (entities and context) that are commonly known and

understandable. In other words, a context model is fundamental since it

provides the common vocabulary to “make our components understand the

same language”. In this thesis, we propose context models that are based on

[50], which provides foundational ontologies to support conceptual

modelling and situation reasoning. Figure 20 shows the foundation concepts

used in our context models.

Context

-hasContext

1..*

-isContextOf

1..*

ContextSituation

-entities1..*

*

-contexts1..*

*

SpatialEntity IntangibleEntity RelationalContext IntrinsicContext

Entity

{disjoint, complete} {disjoint, complete}

Figure 20 represents the Entity and Context classes. The term „context‟ here

corresponds to the context conditions mentioned in the previous Sections.

Any entity may be related to several different types of context and a specific

context type may be referred to one or more entities. For example, an

entity Person can have Location and Activity context types depending on the

physical position and the activity this person is engaged at a certain

moment. In turn, the context type Location can refer to a Person entity as

Figure 20 Context

model

 MODELS FOR APPLICATION DEVELOPMENT 39

well as to other entities, such as a Device or a Building. Figure 20 shows that

the Entity class is further split in two other classes. The SpatialEntity class

represents tangible objects, such as Person or Device, while the IntangibleEntity

class represents intangible objects, such as Application or Network. The Context

class is also split in two other classes. The IntrinsicContext represents a

context type that belongs to the essential nature of a single entity and does

not depend on the relationship with other entities. An example of intrinsic

context is the location of a person or a device. In contrast, RelationalContext

represents a context type that depends on the relation between distinct

entities, such as the contact list of a user that relates a User entity to several

Contact entities. Finally, Figure 20 depicts the ContextSituation class, which

relates contexts and entities. Context situations allow us to represent

particular state-of-affairs of the applications‟ universe of discourse. For

example, the context situation Proximity describes when a certain person is

within a certain threshold distance from another person. Therefore, the

proximity situation relates an entity Person to another entity Person through

the context Location.

2.4 Models for Application Development

The following Sections discuss the type of models that we have used in this

thesis for the development of context-aware mobile applications.

2.4.1 Information model

An information model represents the data handled by the application being

modelled. In this thesis we use UML class diagrams to model these data in

terms of classes, attributes, operations and relationships among these

classes. Figure 21 shows an example of an information model, which

represents the classes User, Buddy and BuddyList, their attributes, e.g., the

name of the user, their operations, e.g., getBuddyList() to retrieve the list of

user‟s contacts, and their relationships, e.g., “the user has a buddy list” and

“the buddy list is a set of buddies”. The User, who is somebody registered in

an application with a name, has a BuddyList, which represents all the

contacts of the user in the application. The Buddy class provides detailed

information about these contacts, such as their email, phone number and

contact location. The application uses this information to offer its

functionality to the user.

40 CHAPTER 2 GENERAL CONCEPTS

+getName() : String

+getEmail() : String

+getPhoneNr() : String

+getLocation() : ContactLocation

+Email : String

+PhoneNr : String

+location : ContactLocation

Buddy

+getBuddyList() : BuddyList

+name : String

+buddyList : BuddyList

User

+getBuddy(in name : String) : Buddy

+addBuddy(in buddy : Buddy) : Boolean

+removeBuddy(in buddy : Buddy) : Boolean

+buddy : Buddy

BuddyList

-isInBuddyListOf1..*

-hasBuddy

*

-isBuddyListOf

1

-hasBuddyList1

+Home

+Mobile

+Work

+Unknown

«enumeration»

ContactLocation

2.4.2 Context model

A context-model represents the relevant concepts used by application

components that manipulates context. In this thesis we use UML class

diagrams to model foundation concepts and instances of these concepts.

Figure 22 shows an example of context model complementary to the

information model in Figure 21.

Context

-hasContext

1..*

-isContextOf

1..*

SpatialEntity RelationalContext

Entity

Person

BuddyUser BuddyList

-isBuddyListOf1 -hasBuddyList1
-isInBuddyListOf1..*-hasBuddy

*

List

Figure 22 depicts the object Person, who is an example of SpatialEntity since it

represents a tangible object. A List is an example of RelationalContext, since it

represents a context type that depends on the relation between distinct

entities. These entities are the User and the Buddy in Figure 22. The User has

only one BuddyList, which is a collection of several Buddy objects. A Buddy

can be in the BuddyList of one or several User objects.

Figure 21 Example of

information model

Figure 22 Example of

context model

 MODELS FOR APPLICATION DEVELOPMENT 41

2.4.3 Behavioural model

A behavioural model represents possible behaviour (sequence of activities)

of the system to achieve the goals of the application. Figure 23 shows an

example of behavioural model as UML activity diagram. This diagram is

based on the information model in Figure 21.

removeRequest

removeAcceptance

removeRejection

String name

User.getBuddyList().removeBuddy(User.getBuddyList.getBuddy(removeRequest.name))

IsInList(removeRequest.name, BuddyList): boolean

!IsInList(removeRequest.name, BuddyList): boolean

Figure 23 depicts an example scenario that allows a user to remove a buddy

from his contact list. In this scenario, the removeRequest activity provides

the name of the buddy to be removed. If this buddy is not in the user‟s

contacts (!IsInList(removeRequest.name, BuddyList): boolean condition), the user

request is rejected (removeRejection). Otherwise (IsInList(removeRequest.name,

BuddyList): boolean condition) the request is accepted (removeAcceptance) and

the buddy is removed.

Figure 23 Example of

behavioural model

Chapter

3

3. A Model-Driven Methodology

This chapter gives an overview of the MDA-based methodology we have

defined for the development of context-aware mobile applications. We first

present the basic elements of this methodology separately, such as our

design models with different abstraction levels and the transformations

between these models. We further introduce an essential concept of our

methodology, i.e., the concept of interaction pattern, which has been used to

enforce reuse during the automation of our model transformations. Since

context-aware mobile applications are our target domain, we also present a

reference architecture that can be used to develop such applications. We

finally combine the basic elements, interaction patterns and reference

architecture in a global methodology overview.

This chapter is organised as follows: Section 3.1 presents the basic

elements of our MDA-based methodology, Section 3.2 discusses the

approach based on reuse that we have taken to define the behaviour models

and transformations proposed in this methodology, Section 3.3 presents

the interaction pattern concept, Section 3.4 introduces our reference

architecture tailored to context-aware mobile applications and services,

and, finally, Section 3.5 gives the methodology overview.

3.1 Basic Elements

Since this thesis aims at providing a model-driven software development

methodology, we start from the following definition inspired by [58-59]:

A software development methodology defines in a structured and systematic way the

set of activities, roles that perform these activities, products that are artefacts of

these activities, and logical and temporal dependencies between them (activities,

roles and artefacts), in the development process of software applications.

Definition 8 Software

development

methodology

44 CHAPTER 3 A MODEL-DRIVEN METHODOLOGY

Since our methodology is model-driven, the artefacts consist of models, and

the main activities consist of transformations between these models. Figure

24, which elaborates on Figure 9, shows these models and transformations,

which are discussed in the following Sections together with the approach

we have followed to realise them.

According to the MDA principle of separation of concerns, we divided our

methodology in different levels of models with different degrees of

platform-independence. As shown in Figure 24, we first divided the design

process in PIM and PSM design phases. Since application behaviour should

be already incorporated in the PIM design phase, we focused on reasoning

at this level. We decomposed our PIM level in several models, where each

consecutive PIM model adds technical details to the previous one. Initially,

we modelled only two levels of platform-independence, namely SS and

SDCM in Figure 24. Since the gap between SS and SDCM was rather wide,

Figure 24 Overview of

models and

transformations at

different abstraction

levels

 BASIC ELEMENTS 45

and correctness and consistency, particularly of behavioural aspects, were

hard to guarantee in a single transformation step, we learned that an

intermediate level (SDRM) was necessary. As a result, we recommend three

levels, namely SS, SDRM and SDCM as the ideal set of PIM models that

should be used in our methodology.

3.1.1 Models

The service specification (SS) is the most abstract model of the methodology

and describes the application to be developed as a single entity with

behaviour from an external perspective only. At this level, we specify the

service that our application offers to its user and we do not consider any

structural detail of the application, i.e., we do not have any knowledge yet

about its internal components. As shown in Figure 25, the SS models the

system as a black box, which receives some inputs from the environment

and eventually generates outputs. This view coincides with the integrated

perspective of the system (see Section 2.2.2).

SInputs Outputs

The service design refined model (SDRM) is a refinement of the SS behaviour

model into a structured behaviour. At this level, we consider the system

from its distributed perspective (see Section 2.2.2) as a set of interacting

components, for example, components C
1
, C

2
 and C

3
 in Figure 26. We

consider each of these components as a black box and we do not have yet

any knowledge about their internal activities. However, these components

interact with each other and we specify these interactions as message

exchanges. Figure 26 shows a simple example in which the input to the

system corresponds to an input message I
1
 to the component C

1
. In this

example, after receiving this message, component C
1

generates an

intermediate output message O
1
, which is then taken as input I

2
 by

component C
2
. The message exchange continues until component C

2

generates the output message O
4
, which corresponds to the final output of

the system.

C1
C2 C3

I1 O1

O2

O3

O4S

Inputs

Outputs

I2

I3

I4

Figure 25 Service

specification (SS)

Figure 26 Service

Design Refined Model

(SDRM)

46 CHAPTER 3 A MODEL-DRIVEN METHODOLOGY

The service design component model (SDCM) is a refinement of the SDRM into a

detailed behaviour of concrete components. At this level, we consider again

the system from its distributed perspective as a set of interacting

components with individual internal processes and activities. Figure 27

shows that each component has an internal flow of activities in order to

provide inputs and outputs for the message exchange.

C1 C2 C3

I1

O4
S

Inputs

Outputs

O1 I2
O2 I3

O3I4

A platform-specific model design (PSM) describes the realisation of the

application in terms of a specific target technology. Several alternative PSMs

may implement a PIM as long as correctness and consistency are

guaranteed. Therefore, it is in principle possible to use different

middleware technologies to realise the platform-specific service design.

Several intermediate steps could be applied also at the PSM level before

generating the implementation code. However, since this work focuses on

the behaviour modelling of the application at the PIM level, we assume a

direct transformation to code and do not discuss the PSM level further.

3.1.2 Model transformations

Our model-driven methodology includes two model transformations at the

PIM level, i.e., transformations T
1
 and T

2
, and one transformation T

3
 from

PIM to PSM. Figure 28 relates these transformations to the models

described above.

Transformation T1 refines the SS behaviour model, which is too

abstract to be directly executed by any platform-specific technology, into a

SDRM structured behaviour based on the components of the reference

architecture chosen for the application. Although this SDRM model reflects

the internal structure of the system and the interactions among

components, it is not executable yet. Therefore, transformation T
2

synthesises this structured behaviour into the SDCM behaviour of

individual components, which can in principle be executed, since it

prescribes the internal activities of each component and how these

components interact with each other in order to achieve the goals of the

application. Finally, the transformation T
3
 maps the SDCM, which is

Figure 27 Service

Design Component

Model (SDCM)

 BASIC ELEMENTS 47

platform-independent, onto some specific middleware platform on which

the design can be realised. In principle, it is possible to use different

middleware platforms to implement the SDCM.

 S = System

C1,2,3 = Components 1,2,3

SS = Service Specification

SDRM = Service Design Refined Model

SDCM = Service Design Component Model

Inputs OutputsSS

S

T1

P
la

tf
o

rm
-I

n
d

ep
e

n
d

e
n

t
M

o
d

el
 (

P
IM

)
D

es
ig

n

Target platform selection

Platform-Specific Model (PSM) Design and Implementation

T2

T3

SDRM

SDCM

C1
C2 C3

I1 O1

O2

O3

O4

Inputs

Outputs

I2

I3

I4

Inputs

Outputs

C1 C2 C3
I1

O4

O1 I2
O2 I3

O3I4

S = System

C1,2,3 = Components 1,2,3

SS = Service Specification

SDRM = Service Design Refined Model

SDCM = Service Design Component Model

Inputs OutputsSS

S

T1

P
la

tf
o

rm
-I

n
d

ep
e

n
d

e
n

t
M

o
d

el
 (

P
IM

)
D

es
ig

n

Target platform selection

Platform-Specific Model (PSM) Design and Implementation

T2

T3

SDRM

SDCM

C1
C2 C3

I1 O1

O2

O3

O4

Inputs

Outputs

I2

I3

I4

Inputs

Outputs

C1 C2 C3
I1

O4

O1 I2
O2 I3

O3I4

A common requirement to all the transformations in Figure 28 is that they

should preserve correctness and consistency with the original abstract

specification of the system. In other words, it is possible to gradually add

details to these models to specify the internal view of the system. However,

consecutive models should always preserve the original behaviour from the

perspective of the external environment (users). This is represented in

Figure 28 where inputs and outputs of a higher level are preserved at a lower

level: the level of details gradually increases from SS to SDCM, but the

inputs and outputs to/from the system should always be the same.

Moreover, if the SS level shows multiple inputs and outputs with a specific

ordering/interleaving, this should be preserved as well at lower levels.

Towards the automation of the transformations in Figure 28, we used

the following approach, consisting of three phases:

Figure 28 Model

transformations

48 CHAPTER 3 A MODEL-DRIVEN METHODOLOGY

1. manual creation of models: we initially created our models manually in

order to have a clear understanding of the source and target models of

our transformations,

2. manual mappings between models: we created manual mappings from

source to target model in order to generate systematic guidelines for

these transformations,

3. automation of transformations: we used these guidelines to generate

prototypes of transformation specifications that could be taken as input

by some transformation engine.

Section 3.2 further elaborates on this approach.

3.1.3 Modelling language

Languages are essential in a methodology and should be chosen properly.

Our methodology should prescribe: (1) a language to model the application

structure and behaviour at the PIM level, and (2) a language that can be

used at the PSM level to implement this structure and behaviour according

to the target platform of choice. The choice of a suitable modelling

language is not a trivial task, as demonstrated by the discussion in the MDA

community on the lack of a commonly agreed language to represent

behaviour [11]. Chapter 4 discusses the state-of-the-art in behaviour

modelling languages and techniques, compares their strengths and

weaknesses, and selects the language(s) that we considered more suitable

for the purpose of this thesis.

3.2 Modelling and Transformation Approach

The main challenge in this thesis consists of automating as much as possible

the PIM model transformations proposed in our methodology. In order to

achieve this, we have looked at ways not only to realise automatic model

transformations, but also to reuse the knowledge acquired in the process of

automating these transformations. We started by considering a case study

on the realisation of a context-aware mobile application, and a modelling

language suitable to represent the reactive behaviour of this application. As

mentioned in Section 3.1.2, we distinguished three phases of this case

study. During phase 1 we manually created the SS, SDRM and SDCM in

order to have a clear understanding of the source and target models of our

transformations (Figure 29).

 MODELLING AND TRANSFORMATION APPROACH 49

1.b) SDRM  abstract components interactions,
influenced by application architecture

Service
Specification

(SS)

Service Design
Refined Model

(SDRM)

Service Design
Component Model

(SDCM)

Application
architecture

influences

1.a) SS  abstract actions, no knowledge
of application architecture

1. Manual creation of SS, SDRM and SDCM:

1.c) SDCM  concrete internal and external
actions of individual components

influences

Afterwards, during phase 2, we realised a manual mapping of the SS into an
SDRM and we noticed some recurrent behaviour in the application that
could be generalised and exploited for reuse (step 2.a in Figure 30).
Particularly, we have been able to identify in the SDRM an entire set of
recurrent behaviour execution traces among the components of the system.
We called the identified traces interaction patterns. Section 3.3 elaborates on
the interaction pattern concept.

At this point, we classified all the interaction patterns we were able to
identify in the SDRM (step 2.b in Figure 30). This classification was based
on the type of interaction performed by the pattern and the involved
components. We called this classification interaction markers library and used
it as bottom-up knowledge to mark the abstract actions at the SS level (step
2.c in Figure 30). In this way, we created a vertical correspondence of
interaction markers in the SS onto interaction patterns in the SDRM (step
2.d in Figure 30).

2.d) SS to SDRM  refinement:
mapping of interaction
markers onto interaction
patterns

Interaction markers
library

Service
Specification

(SS)

Service Design
Refined Model

(SDRM)

Service Design
Component Model

(SDCM)

refinement

refinement

Interaction
patterns

Application
architecture

influences

Executable
Interaction patterns

identification of

influences

marking of

2. Manual mappings between models: 2.a) SS to SDRM  identification of
interaction patterns in the SDRM,
influenced by application
architecture

2.b) SS to SDRM  creation of
interaction markers library,
based on interaction patterns

2.c) SS to SDRM marking SS with
interaction markers library,
interaction patterns as bottom-
up knowledge

2.f) SDRM to SDCM  refinement:
mapping of interaction
patterns onto executable
patterns

identification of

creation of

2.e) SDRM to SDCM  identification of
executable interaction patterns in
the SDCM, based on interaction
patterns

based on

BOTTOM-UP
knowledge

Figure 29 Modelling
and transformation
approach: phase 1

Figure 30 Modelling
and transformation
approach: phase 2

50 CHAPTER 3 A MODEL-DRIVEN METHODOLOGY

Afterwards, we realised the manual mapping of the SDRM into the SDCM
(step 2.e in Figure 30) in which we related the interaction patterns
identified at the SDRM level to corresponding patterns at the SDCM level
that can in principle be executed. This assignment was quite
straightforward, since the interaction patterns explicitly specify which
components participate in the pattern. However, we noticed that some
synchronization and concurrency issues of interacting components still had
to be considered. For example, when scheduling the patterns execution, we
could decide to interleave these patterns, by executing all the patterns one
at a time in a single thread of control. Alternatively, we could decide to
execute these patterns in parallel threads of control. Independently of the
choise made, some formalism had to be used to represent and analyse these
choices. Therefore, we looked at formalisms to synthesize components
behaviour. Chapter 4 discusses these formalisms.

During phase 3, we finally automated our transformations by using the
top-down mappings SS to SDRM to SDCM created in the previous step
(Figure 31).

Interaction markers
library

Service
Specification

(SS)

Service Design
Refined Model

(SDRM)

Service Design
Component Model

(SDCM)

refinement

refinement

Interaction
patterns

Executable
Interaction patterns

mapping

TOP-DOWN
tranformations

3. Automation of transformations:

3.a) SS to SDRM  refinement
transformation specification,
based on mapping interaction
markers/interaction patterns

3.b) SDRM to SDCM  refinement
transformation specification,
based on mapping interaction
patterns/ executable interaction
patterns

based on

based on

mapping

3.3 Interaction Patterns

Interaction patterns can be of two different types, namely basic and
composite patterns. Basic patterns involve interactions between only two
participants, and composite patterns involve interactions between more
than two participants. Composite patterns can be obtained by combining
basic patterns with the use of logical operators. Therefore, basic interaction
patterns can be defined as follows:

Figure 31 Modelling
and transformation
approach: phase 3

 INTERACTION PATTERNS 51

Basic interaction patterns are building blocks of behaviour, defined from the
internal distributed perspective of the system, consisting of actions between two
interacting components (participants) and the information eventually exchanged
between these components.

Figure 32 shows examples of basic interaction patterns identified in the
SDRM in Figure 26:
– the basic pattern usercomponent represents a one-way interaction

between the participants user and the component C1 in which the user

provides the input message I1 to C1,
– the basic pattern componentcomponent represents a one-way interaction

between the two participants component C1 and C2,
– the basic pattern componentcomponent represents a two-way

interaction pattern between the two participants C2 and C3 in which
component C3 sends back a message (input I4 ≡ output O3) to C1,

– the basic pattern componentuser represents a one-way interaction
between the two participants component C2 and user.

C1 C2
O1 I2

C2 C3

O2 I3

I4 O3

IP = (BasicPattern#1; User, C1; I1)

N : BasicPattern#1;
P1 : User,
P2 : C1;
msg1 : I1

C1
I1

Inputs

C2

O4
Outputs

IP = (BasicPattern#2; C1, C2; O1≡ I2)

N : BasicPattern#2;
P1 : C1,
P2 : C2;
msg1 : O1≡ I2

IP = (BasicPattern#3; C2, C3;O2 ≡ I3,I4≡ O3)

N : BasicPattern#3;
P1 :C2,
P2 : C3;
msg1 : O2 ≡ I3,
msg2: I4≡ O3

IP = (BasicPattern#4; C2, User; O4)

N : BasicPattern#4;
P1 :C2,
P2 : User;
msg1 : O4

Composite interaction patterns are pieces of behaviour, defined from the internal
distributed perspective of the system, consisting of a set of building blocks (basic
interaction patterns) assembled by using logical connectors in order to achieve a
specific goal.

Definition 9 Basic
interaction patterns

Figure 32 Basic
interaction patterns

Definition 10
Composite interaction
patterns

52 CHAPTER 3 A MODEL-DRIVEN METHODOLOGY

Figure 33 shows examples of how to combine the basic patterns mentioned

above in more complex configurations of composite patterns. The first two

examples represent concatenations of basic patterns to be executed in

sequence. The third example represents an exclusive choice.

3.4 Application Architecture

In this thesis we target context-aware mobile applications for two reasons,

which take into account a user and a developer perspective, respectively:

1. Users demand advanced and personalised services. Context-aware

mobile applications provide this kind of services, which create added-

value according to their users‟ personal preferences and needs, wherever

these users are and whatever they are doing.

2. Context-aware mobile applications provide the developers with a

representative example of reactive behaviours. These applications are

able to monitor the user‟s context and, in case of changes in this

context, consistently adapt their behaviour in order to satisfy the user‟s

current needs or anticipate the user‟s intentions. Since this work aims at

developing a methodology to model the behaviour of systems, context-

aware mobile applications are suitable for our purposes. Moreover,

because of their inherent complexity and relative immatureness,

context-aware mobile applications are in particular need of receiving

methodological support for their design.

Figure 33 Composite

interaction patterns

 APPLICATION ARCHITECTURE 53

In order to develop context-aware mobile applications, a middleware

platform is necessary that consists of generic components and supports

general purpose functions used by such applications. For example, all

context-aware mobile applications are capable to retrieve context

information from the user‟s context and, based on this information, provide

relevant services to their user. Because of stringent time-to-market

requirements, it is not desirable that each individual application captures

and processes context information for its own use, since application

development in this case would be time consuming and costly. In contrast,

with a proper a middleware platform, generic functions can be made

available and reused in various context-aware mobile applications.

Therefore, the development of such applications relies on dynamic

middleware platforms, which consist of a variety of components distributed

in the environment that interoperate by making use of each other‟s services.

We have defined a middleware platform based on a reference architecture

tailored to context-aware mobile applications. This reference architecture is

discussed in Section 3.4.2 (Figure 35).

3.4.1 Tiers

In order to organise the components of our middleware platform, a tiered

architecture has been defined, consisting of the following tiers (Figure 34):

1. a presentation tier, which is responsible for the interaction with the user.

Interaction can take place through fat terminals (such as notebooks and

desktop PCs), thin terminals (such as PDAs), mobile terminals (smart

phones and regular mobile phones), and plain-old telephones;

2. an application logic tier, which is responsible for enforcing the behaviour

of the application. This includes supporting the interaction between

different users and coordinating the access to reusable (context, action

and information) services;

3. a resources tier, which consists of context, action and information services.

These services can be offered by external sources (e.g., web services) or

can be provided in the scope of user‟s terminal (e.g., GPS devices acting

as context sources).

The coordination task of the application logic tier is assigned to the

coordinator, which receives events and triggers actions as reactions to these

events. Events may be either user input events, which consist of explicit user

requests to the application, or context events, which consist of relevant

changes in the user context. For example, a user input event may be a

request for the user‟s list of buddies, and a context event may be the

proximity event triggered whenever a buddy is nearby the user. Actions

represent application reactions to user input and context events, and may

54 CHAPTER 3 A MODEL-DRIVEN METHODOLOGY

be an invocation of any internal or external service, such as the generation

of a signal, the delivery of a notification or a web service request.

3.4.2 Components

Figure 35 shows our reference architecture, which was originally defined

[60-61] for context-aware applications that allow users to contact the right

person, at the right time, at the right place, via the right communication

channel. However, we assume that this architecture is general enough to be

reused with other context-aware mobile applications by simply redefining

some application-specific components, such as context sources and action

providers. For example, in the health care domain, context sources can be

wearable devices that can monitor the user‟s vital signs, such as heart beat

or blood pressure. The use of this architecture does not limit our

methodology to context-aware mobile applications, since the methodology

can be applied (with minor adjustments) to other categories of applications

based on different reference architectures.

Figure 34 Tiered

architecture for context-

aware mobile

applications

 APPLICATION ARCHITECTURE 55

user

buddy

Presentation
Component

Presentation
Component

USER CONTEXT

BUDDY CONTEXT

User
Agent

Service
Trader

User
Agent

Action Providers

Email Service

Phone Service

Chat Service

SMS Service

context
changes

context
changes

user
input
events

context
events

discover

(Outlook) Calendar Service

(IM) Presence Service

(GPS) Location Service

Context Sources

register

register

Coordinator

DataBase

search & update

execute actions

execute actions

trigger
actions

user

buddy

Presentation
Component

Presentation
Component

Presentation
Component

Presentation
Component

USER CONTEXT

BUDDY CONTEXT

User
Agent
User
Agent

Service
Trader

User
Agent
User
Agent

Action Providers

Email Service

Phone Service

Chat Service

SMS Service

Action Providers

Email Service

Phone Service

Chat Service

SMS Service

context
changes

context
changes

user
input
events

context
events

discover

(Outlook) Calendar Service

(IM) Presence Service

(GPS) Location Service

Context Sources

(Outlook) Calendar Service

(IM) Presence Service

(GPS) Location Service

Context Sources

register

register

Coordinator

DataBase

search & update

execute actions

execute actions

trigger
actions

Figure 35 shows a single user instance interacting with the system and a buddy

of this user. The presentation component takes care of the interactions with the

end-user, either the user or her buddy. There is one presentation

component for each end-user. Since context-aware mobile applications

should be able to provide relevant services to their users anywhere and

anytime, we assume that the presentation component is integrated in the

user device, which may be either a desktop PC, in the case of users with

fixed location, or a Smartphone or Pocket PC phone in the case of users on

the move.

The user agent in Figure 35 interacts on behalf of the user with the

presentation component to obtain user input and present user output. The

user agent is located in the user device and we assume that there is one user

agent for each end-user. The user agent also provides the coordinator with

user input events.

The coordinator in Figure 35 orchestrates all the other components, with

searching and updating a database, which contains information about users

(e.g., name, password, preferred contact means and list of buddies). We

assume a system configuration with one service coordinator and one

database. The service coordinator also interacts with context sources and

action providers.

The context sources in Figure 35 sense changes in the user‟s context and

generates context events for the coordinator. Figure 35 shows a (GPS)

location service that provides information about users‟ current location, a

(IM) presence service that provides indications whether users registered in

the application are available online in the network, and a (Outlook)

calendar service that provides information about users‟ appointments and

activities. We assume that there is one (GPS) location service, one (IM)

Figure 35 Reference

architecture for context-

aware mobile

applications

56 CHAPTER 3 A MODEL-DRIVEN METHODOLOGY

presence service and one (Outlook) calendar service for each user agent in

this particular configuration. These services are registered in the service

trader.

The action providers are responsible for performing actions that follow

user input and context events. Figure 35 shows an SMS service, phone service, e-

mail service and chat service, which enable users to communicate with each

other through, respectively, sending messages, making a phone call, sending

e-mails and chatting. We assume that there is one SMS service, phone

service, e-mail service and chat service for each user agent. These services

are also registered in the service trader.

The service trader in Figure 35 registers all the available services offered by

context sources and action providers. This allows the coordinator to

dynamically discover available services based on the service descriptions that

are published in the service trader. After discovering the proper service, the

coordinator can invoke it by using the endpoint address contained in the

service description. Alternatively, the coordinator can forward this endpoint

to the user agent, which can directly invoke the service without intervention

of the coordinator. The use of a service trader is a well established pattern

of service discovery in service-oriented architectures. Examples of service

traders in middleware platforms are the OMG CORBA trader [62] and the

UDDI registry [63].

The interactions among components in Figure 35 are based on the SOA

approach, since components are considered only from the point of view of

the service that they provide or use without any mentioning of the internal

details of how the service itself is implemented. According to service-

orientation principles, components make use of each other‟s services to

cooperate in order to support the goals of the application. Therefore, the

coordinator in Figure 35 uses the service offered by context sources, which

provide the coordinator with context events. However, the coordinator is

not aware of the details of how context sources obtain context information

from the user environment and how they process this information in order

to generate context events.

3.5 Methodology Overview

Figure 36 shows an overview of the complete methodology, which includes

also the roles involved in the development process. These roles are the

following:

– the user should give support mainly in the initial phase of the

methodology, when the application requirements are gathered to specify

the expected behaviour of the application. In later phases, the user

should also provide feedback to determine whether the executed

 METHODOLOGY OVERVIEW 57

behaviour, either at the PIM level or PSM level, fulfils the expected

behaviour according to the requirements.

– the designer is responsible for the behaviour modelling of the application,

especially at the PIM level of the methodology. In the initial phase, the

designer creates the service specification by using the interaction

markers library according to the user requirements.

– the developer is responsible for the PSM design of the application and the

generation of PSM code.

As depicted in Figure 36, the user supports the designer in the creation of

the service specification by specifying the application requirements. The

designer is provided with the library of interaction markers that we

developed in the manual phase of our approach. These markers represent

recurrent services that are commonly offered to application users. For

example, the marker simple user request may represent a service that allows

the user to ask the application to perform a certain task for which no

application response is required. A user may also require a certain task

followed by an application reaction (user request with response marker) or by a

confirmation of whether the requested task was successfully performed or

not (user request with acceptance or rejection response marker). Moreover, we

have added to the markers library some specific functionality common to all

context-aware mobile applications, such as retrieval of context information

Figure 36 Methodology:

roles, activities, models

and dependencies

58 CHAPTER 3 A MODEL-DRIVEN METHODOLOGY

(context query marker), and application reactions to context changes without

explicit user intervention (context event with alert marker).

By using our interaction markers library, the designer can in principle

assemble the behaviour of a new application at a high level of abstraction as

a combination of building blocks that already have a complete top-down

mapping to the implementation, instead of designing and implementing this

application from scratch. In this way, the designer can include an

interaction marker from the library in the specification, such as, for

example, a user request with acceptance or rejection response marker, without any

knowledge on how the application works internally to provide the expected

response to the user.

Ideally, we aim at allowing the user to assemble the behaviour of a

personalised application by combining existing building blocks (SS),

automatically obtaining more refined interaction patterns (SDRM), and

automatically generating executable interaction patterns (SDCM) that are

consistent and correct with respect to the original application behaviour

specified in the SS. Realistically, we expect that full automation is in general

not achievable with real-life applications. Therefore, we aim at automating

as much as possible the transformation steps from SS to SDRM to SDCM

mentioned above.

Chapter

4

4. Behaviour Modelling Techniques

This chapter presents a survey of techniques for behaviour modelling that

can be beneficially used in model-driven development and are relevant for

this thesis. These techniques use several modelling notations, such as, for

example, Transition Systems, Live Sequence Charts, UML, Petri Nets, and

BPMN. For each of these techniques, we give an overview and position it

with respect to the abstraction levels of our layered methodology. In

Chapter 5 we evaluate these techniques based on some qualitative criteria

and show how they can be integrated in our methodology.

This chapter is organised as follows: Section 4.2 illustrates a technique

for behaviour synthesis using Transition Systems (TSs), Section 4.1 presents

a technique based on Live Sequence Charts (LSCs), Section 4.3 discusses a

technique for Java code generation from UML-like diagrams, Sections 4.4

and 4.5 present techniques for transforming BPMN process models into

Petri Nets, Section 4.6 illustrates a technique based on patterns to

transform BPMN process models into BPEL, Section 4.7 discusses a

technique for generating BPEL semantics in terms of open Workflow Nets

(oWFN), which are a special case of Petri Nets, and, finally, Section 4.8

proposes a technique for BPEL process generation from abstract

specifications represented in the Interaction System Design Language

(ISDL).

4.1 Synthesis from Properties and Scenarios

The work presented in [64] proposes a technique for behaviour synthesis

based on state machines. State machines are models consisting of states,

transitions between these states, and actions. These models are suitable to

represent behavioural aspects of applications, particularly for the

specification of behaviours that are assigned to concrete components, like

in the service design component models of this thesis.

60 CHAPTER 4 BEHAVIOUR MODELLING TECHNIQUES

In [64], two types of behaviour model synthesis techniques are analysed:

synthesis from properties and from scenarios. A behaviour model

synthesized from properties provides an upper bound of the modelled

application, since it includes all possible acceptable behaviours of the

application that do not violate those properties. However, it may not be

necessary and advisable to model such a large set of behaviours (all these

behaviours are possible, but not all of them are required). In contrast, a

behaviour model synthesized from scenarios provides a lower bound of the

modelled application, since it includes a limited set of example behaviours

that the application can assume. However, this set may considerably grow

when extending the scenario (these example behaviours are required, but

there are other possible behaviours that have not been considered yet).

Therefore, [64] suggests that a comprehensive behaviour model should be

synthesized both from properties and scenarios.

As explained in [64], traditional state machines models, such as Labelled

Transition Systems (LTSs), cannot capture this middle ground between

properties and scenarios, since LTSs do not support the distinction

between required and possible behaviours. Therefore, a formalism based on

Modal Transition Systems (MTSs) is proposed in [64] that allows to

distinguish possible from required behaviour, preserving the original

properties and scenario, and also supporting elicitation of new properties

and scenarios. More details on LTSs and MTSs can be found in [64]. Figure

37 shows an overview of the behaviour synthesis technique from properties

and scenario.

The left part of Figure 37 shows the synthesis from properties. In [64],

safety properties are considered, i.e., those properties that specify that

“nothing bad can happen”. Although several formalisms can be in principle

used to express these properties, Fluent Temporal Logic (FLTL) is

recommended in [64-65] because FLTL provides a uniform framework for

specifying and model checking state-based temporal properties and event-

based models. Using the algorithm suggested in [64], an LTS can be

generated from a FLTL property. This LTS can be further synthesized in an

MTS, which distinguishes possible from required behaviours.

The right part of Figure 37 shows the synthesis from scenarios. Although

several notations can be in principle used to represent scenarios, Message

Sequence Charts (MSC) [66] are proposed. Based on the technique

presented in [67], a scenario is represented using a combination of basic

message sequence charts (bMSC) and high-level message sequence charts

(hMSC). A bMSC represents a scenario in an UML sequence diagram-like

notation, i.e., as sequences of interactions among components. An hMSC

represents a scenario in an UML activity diagram-like notation, i.e., as a

flow of activities, each of them described as a bMSC. Using the algorithm in

[67], it is possible to synthesize an LTS from an MSC scenario. Afterwards,

 SYNTHESIS FROM PROPERTIES AND SCENARIOS 61

using the algorithm described in [64], it is further possible to synthesize an

MTS, which distinguishes possible from required behaviours.

Synthesis from properties

Safety properties
(FLTL)

synthesis

LTS from properties

MTS from properties

synthesis

Synthesis from scenarios

Message
Sequence Charts
(bMSC + hMSC)

synthesis

LTS from scenarios

MTS from scenarios

synthesis

merge

MTS from properties and scenarios refinement

synthesis

LTS from properties and scenarios

Synthesis from properties

Safety properties
(FLTL)

synthesissynthesis

LTS from properties

MTS from properties

synthesissynthesis

Synthesis from scenarios

Message
Sequence Charts
(bMSC + hMSC)

synthesissynthesis

LTS from scenarios

MTS from scenarios

synthesissynthesis

mergemerge

MTS from properties and scenariosMTS from properties and scenarios refinementrefinement

synthesissynthesis

LTS from properties and scenariosLTS from properties and scenarios

The two MTSs synthesized from properties and scenarios can be merged in

one MTS, as shown in Figure 37. The merged MTS preserves the original

properties and scenarios, as demonstrated in [64]. In principle, this MTS

can be incrementally refined by adding new properties to reduce the possible

transitions to required transitions. Possibly, a final LTS with only required

transitions is generated. In practice, it may not be necessary to do so since

the designer may explicitly decide to leave some behavioural choices

(possible transitions) open further down in the development process.

The MTSA (Modal Transitions System Analyser) [68] is a prototype tool

to support the elaboration and verification of MTSs. The MTSA is built on

top of the LTSA (Labelled Transitions System Analyser) tool [69], which

allows to automatically model check required properties in an LTS and

supports simulation of the system behaviour. Based on the work in [70],

some LTSA plug-ins further allow to validate the executable behaviour of

web services compositions represented in BPEL code and verify whether

Figure 37 Overview of

the technique for

behaviour synthesis

from properties and

scenarios

62 CHAPTER 4 BEHAVIOUR MODELLING TECHNIQUES

this BPEL code fulfils the requirements represented in corresponding MSC

scenarios.

Relevance to this thesis

Figure 38 positions the synthesis from properties and scenarios technique at

the PIM level design of our methodology.
P

la
tf

o
rm

-S
p

ec
if

ic
M

o
d

el
 (

P
SM

)
D

es
ig

n

P
la

tf
o

rm
-I

n
d

ep
e

n
d

e
n

t
M

o
d

el
 (

P
IM

)
D

es
ig

n

Target platform selection

SSSSSS

T1T1

T2T2

T3T3

SDRMSDRM

SDCMSDCM

PSMPSM

bMSC + hMSC (sequence + activity diagrams)
&

FLTL properties

Uchitel et al.

Labelled Transition Systems (LTSs)
&

Modal Transition systems (MSCs)

BPEL

The representation of scenarios in terms of MSC sequence and activities

diagrams notation corresponds to our SDRM level, in which the system

behaviour is assigned to application components interacting with each

other. The synthesis of these components in terms of LTSs and MTSs from

the perspective of one specific component corresponds to our SDCM

model. In [64] the synthesis of behaviour specifications is discussed, but

not how these behaviours can be executed. However, since the work in [70]

suggests BPEL as a possible target technology, we positioned BPEL at the

PSM level in Figure 38.

4.2 Play-in Play-out

The work in [71-72] describes a technique called the play-in/play-out

approach for specifying (pieces of) behaviours in a user-friendly way at a high

abstraction level and executing them at a lower abstraction level. This

technique is tailored to reactive systems. Since the context-aware mobile

applications considered in this thesis are an example of reactive systems, the

play-in/play-out approach is relevant for our work.

Figure 38 Positioning of

Uchitel et al. with

respect to our

abstraction levels

 PLAY-IN PLAY-OUT 63

As schematically represented in Figure 39, the play in phase of the

approach allows one to specify scenarios in a graphical interface of the

system under development and automatically generate a corresponding Live

Sequence Chart (LSC) [73]. The transformation is automatically realised by

a tool called the play engine. By allowing one to specify system requirements

in user-friendly way, i.e., clicking buttons and rotating knobs in a GUI, the

abstraction level in the requirements specification process is raised. In

contrast, specifying these requirements in a formal language would require

specific expertise and detailed knowledge of the language‟s syntax and

semantics.

Play in

GUI applicationGUI application

Play-enginePlay-engine

Live Sequence Charts
(LSCs)

Live Sequence Charts
(LSCs)

Play out

play in scenarios

GUI applicationGUI application

Play-enginePlay-engine

play out scenarios

Live Sequence Charts
(LSCs)

Live Sequence Charts
(LSCs)

generates animates

simulates

LSCs are a scenario-based visual formalism that extends the ITU message

sequence charts (MSCs) [66] and their UML sequence diagrams variant

[22]. As discussed in [72], LSCs have been created since MSCs and their

UML variant have an extremely weak partial-order semantics that does not

allow representing exhaustively behavioural requirements of a system. In

contrast, LSCs have a powerful formal semantics [73], which allows one to

distinguish scenarios that may happen, called existential charts, from scenarios

that must happen, called universal charts. LSCs can also specify messages that

may and must be received, which are called cold and hot messages,

respectively. In addition, also conditions can be cold, i.e., they may be true

otherwise the control moves out of the considered chart, or hot, i.e., they

must be true otherwise the system aborts.

As further shown in Figure 39, the play out phase of the approach allows

one to specify scenarios in the graphical interface and test the behaviour of

the system. The underlying idea is that one should act as the end-user of the

system, i.e., using the system GUI like if it was the final system, which does

not require any knowledge about LSCs or the scenarios specified in the play

Figure 39 Overview of

the play-in/ play-out

approach

64 CHAPTER 4 BEHAVIOUR MODELLING TECHNIQUES

in phase. As a consequence of end-user actions, the play engine animates

the LSCs specification and simulates the system reactions on the GUI. In

this way, the end-user can evaluate whether the system behaves as expected

or not. Figure 40 shows the benefits of applying this technique in the scope

of this thesis.

Discuss
system functionality

UserSystem designer

1

Domain expert

Prepares GUI

using

Describes scenarios in
informal language

2

3

4

Represents scenarios
in formal language

5

using

Refines design

6

using

Specifies scenarios

Plays-in scenarios in
the play-engine

using

Play-engine

replaced by

replaced by

+

System engineer

Discuss
system functionality

Discuss
system functionality

UserUserSystem designerSystem designer

1

Domain expert

Prepares GUIPrepares GUI

using

Describes scenarios in
informal language

Describes scenarios in
informal language

2

3

4

Represents scenarios
in formal language

Represents scenarios
in formal language

5

using

Refines designRefines design

6

using

Specifies scenarios

Plays-in scenarios in
the play-engine

Plays-in scenarios in
the play-engine

using

Play-enginePlay-engine

replaced by

replaced by

+

System engineerSystem engineer

Figure 40 shows that when developing a new system, the system designer

and the end-user should discuss the system functionality and prepare a

simple GUI, in which the user can specify scenarios [72]. In traditional

methodologies these scenarios are taken as input by a domain expert, who

writes them in an informal language (phase 4 in Figure 40). This informal

specification is translated into a formal specification by a system engineer

(phase 5 in Figure 40), who can further refine it into more technical details

towards the implementation. The benefit of the play-in/play-out approach

is that the domain expert can specify the scenarios directly in the play

engine, which automatically creates the corresponding formal specifications

in terms of LSCs. This benefit is represented in Figure 39 by merging the

phases 4 and 5 in a single phase.

Current work [74] within the play-in/play-out approach focuses on the

realisation of PlayGo [75], which is an extended and broader elaboration of

the play engine tool. PlayGo is an Eclipse-based comprehensive tool for

scenario-based programming with a compiler that transforms LSCs into

AspectJ code [76].

Figure 40 Playing in

behaviours

 PLAY-IN PLAY-OUT 65

Relevance to this thesis

Figure 41 positions the play-in/play-out approach with respect to our

abstraction levels.

P
la

tf
o

rm
-S

p
ec

if
ic

M
o

d
el

 (
P

SM
)

D
es

ig
n

P
la

tf
o

rm
-I

n
d

ep
e

n
d

e
n

t
M

o
d

el
 (

P
IM

)
D

es
ig

n

Target platform selection

SSSSSS

T1T1

T2T2

T3T3

SDRMSDRM

SDCMSDCM

PSMPSM

Harel et al.play-in

Live Sequence
Charts (LCSs)

play-out

Live Sequence
Charts (LSCs)

AspectJ

State Charts

Java, C++, etc.

Since the play-in phase of the approach allows the designer (or even the

final user) of the system to specify the application requirements at a high

abstraction level, it can be compared to our SS level. The play-out phase

can be then compared to our SDRM level, in which we represent the

cooperating behaviour of interacting components without any knowledge of

how these components behave internally. In [71], the behaviour of

interacting components is also called inter-object behaviour, while the

internal behaviour of individual components is called intra-object behaviour.

Our SDCM level represents the intra-object behaviour of our components

synthesized from the inter-object behaviour represented in the SDRM level.

In contrast, the play-out mechanism executes the inter-object behaviour of

the system for simulation purposes, but does not further synthesize intra-

object behaviour. Therefore, the play-in/play-out approach only covers our

SS and SDRM levels. However, it could be possible to generate SDCM-like

models by translating LSCs diagrams into state charts [77], which allow to

represent the intra-object behaviour, and then generate code out of these

state charts corresponding to our PSM level, by using available tools, such as

Rhapsody [78]. The playGo tool currently under development provides a

straightforward way to generate AspectJ code from LSCs, i.e., realises a

transformation from our SDRM level directly to the PSM level, as indicated

in Figure 41.

Figure 41 Positioning of

Harel et al. with respect

to our abstraction levels

66 CHAPTER 4 BEHAVIOUR MODELLING TECHNIQUES

4.3 Story-Driven Modelling

The Fujaba Project [79] aims at supporting model-driven development by

providing an environment that automatically generates code from abstract

design models. These models should be complete in order to represent

both the structural and behavioural aspects of the software application

under development. Moreover, the transformation from design models to

code should be semantics-preserving in order to assure that the target

model of the transformation still conforms to the behavioural requirements

specified in the source model. Both these challenges of representing

complete behavioural models and creating semantics-preserving

transformations are addressed in the Fujaba project. Figure 42 shows the

technique for modelling application structure and behaviour and

automatically generate Java source code by using the Fujaba tool.

Fujaba toolFujaba tool

Java codeJava code

System designerSystem designer

Story-driven behaviour modelling

UML class diagrams
Story diagrams

(UML activity diagrams +
UML object diagrams)

+
creates

input

output

As depicted in Figure 42, a system designer (who is also an expert of the

problem domain) should model the desired application as a combination of

UML class diagrams, which represent the application structure, and story

diagrams [80], which represent the application behaviour. Story diagrams are

a combination of UML activity diagrams, which represent the control flow

of methods represented in the class diagrams, and the so called story patterns

[80], which represent the internal behaviour of these methods. Story

patterns can be specified as Java code or graph rewrite rules [81], which are

graphical rules with a left-hand side (LHS) and a right-hand side (RHS). In

case the LHS of a rule is found in a graph (pattern matching), this LHS is

replaced by the corresponding RHS. In the Fujaba technique, story patterns

are expressed in a UML object diagram-like notation.

Figure 42 shows that the story-driven behaviour modelling phase is

followed by the automatic generation of an executable prototype in Java

code. This code generation is realised by the Fujaba tool, which takes the

Figure 42 Overview of

the story-driven

modelling technique

 STORY-DRIVEN MODELLING 67

UML structural and behavioural specifications as input, and maps them

onto the Java language. Particularly, UML classes in the structural model are

straightforwardly mapped onto Java classes, the control flow in the UML

activity diagrams is mapped onto Java control structures, and actions/guards

in the story patterns (UML collaboration diagrams) are mapped onto

corresponding Java code.

In order to guarantee that the transformation depicted in Figure 42

preserves the application behaviour specified in the modelling phase, i.e.,

this transformation is correct, it is necessary to guarantee that the target

model does not change the semantics of the source model in an unintended

way. The work in [82] aims at proving this correctness by defining a formal

semantics of the transformation source and target models in terms of

Transition Systems (TSs). As shown in Figure 43, informal properties in the

source models can be formally expressed in terms of, for example,

Computation Tree Logic (CTL) formulae, and compared to properties in

the target model also expressed as CTL formulae. When properties in the

source model also hold in the target model, then the source and target

models are equivalent and the model transformation preserves behaviour

correctness.

Source model
(UML)

Transition System
(TS)

Transition System
(TS)

semantics

Target model
(TAAL)

Transition System
(TS)

Transition System
(TS)

semantics

model
transformation

CTL formulaeProperties

Properties CTL formulae

in terms of

in terms of

EQUIVALENCE

The source and target models in [82] are represented, respectively, in UML

activity diagrams and TAAL [83], which is a Java-like object oriented

programming language. The transformation from UML activities to TAAL is

defined as a graph transformation, which can be executed using the Groove

tool [84]. Eclipse plugs-in are available to generate transition systems from

UML activities and TAAL. These transition systems correspond to the

source and target models, and can be used by Groove to determine whether

these two models are trace equivalent or not or, analogously, whether the

model transformation preserves semantics.

Figure 43 Behaviour

correctness preserving

approach

68 CHAPTER 4 BEHAVIOUR MODELLING TECHNIQUES

Relevance to this thesis

Figure 44 positions the story-driven modelling technique with respect to

our abstraction levels. The UML activity and object diagrams used to model

stories can be positioned at the PIM level and correspond to our SDCM

model. These diagrams are used to generate Java code at the PSM level, as

shown by the vertical arrow in Figure 44. In order to check whether this

vertical transformation preserves semantics, the considered technique

includes two horizontal transformations at the PIM and PSM levels,

respectively. These transformations create transitions systems

corresponding to UML activity diagrams at the PIM level, and TAAL

programs at the PSM level. TAAL is a simplified and limited version of the

Java language.

P
la

tf
o

rm
-S

p
ec

if
ic

M
o

d
el

 (
P

SM
)

D
es

ig
n

P
la

tf
o

rm
-I

n
d

ep
e

n
d

e
n

t
M

o
d

el
 (

P
IM

)
D

es
ig

n

Target platform selection

SSSSSS

T1T1

T2T2

T3T3

SDRMSDRM

SDCMSDCM

PSMPSM

Engels et al.

Java

UML activity diagrams
&

UML object diagrams

+ TAAL

Transition Systems
(TSs)

Transition Systems
(TSs)

4.4 Automated Verification of BPMN Processes

The work presented in [85] proposes a framework, called the repository, for

automatic verification of business process models represented in several

notations, such as, for example, BPMN and BPEL, and software models

expressed as UML activity, sequence and state diagrams. Formal verification

of these models is important, especially in early stages of the software

development, to detect serious design errors before starting the actual

implementation of the software. However, most of the existing verification

tool cannot be used directly with these models, since these tools are usually

based on other type of formalisms, such as, for example, Petri Nets and

Figure 44 Positioning of

Engels et al. with

respect to our

abstraction levels

 AUTOMATED VERIFICATION OF BPMN PROCESSES 69

process algebra. Therefore, the repository framework provides an

environment that allows transforming specification models to equivalent

models represented in some other formalism so that that these models can

be automatically analysed. The repository framework is implemented as a

web application through which the users can upload models to a repository

and invoke analysis or transformation tools on these models. Figure 45

schematically shows the technique presented in [86], which transforms

BPMN process models into other formalisms for behaviour analisys

purposes.

BPMNBPMN
transformation

(in XSLT)input output input

mCRL2mCRL2transformation
(in C++)

transformation
(in C++) output

Woflan toolWoflan tool

Yasper (extended)
Petri Nets

Yasper (extended)
Petri Nets

Classical
Petri Nets
Classical
Petri Nets

INA toolINA tool

LoLA toolLoLA tool

Yasper tool mCRL2 tool

Figure 45 shows that a first transformation step consists of mapping BPMN

models onto Yasper Petri Nets [87], which extend classical Petri Nets with

some constructs that allow the represention of more complex behaviours,

such as inibithor and reset arcs. The mapping rules are presented in [86].

This transformation is implemented in the Extensible Stylesheet Language

Transformations (XSLT) [88], which is a declarative XML-based language

used for the transformation of XML documents. The Yasper tool [87]

allows manual and automatic simulation of Petri Nets, also for performance

analysis purposes, verification of soundness properties, and reduction

techniques to generate models that are smaller and easier to analyse by

preserving soundness and liveness properties. In order to use other Petri

Nets verification tools, such as Woflan [89], INA [90] and LoLA [91], these

extended Petri Nets should be transformed into classical Petri Nets. That is

because these tools cannot be used when inibithor and reset arcs are used

in the extended Petri Nets models. Therefore, the solution proposed in

[87] and depicted in Figure 45 consists of transforming these extended Petri

Nets into mCRL2 [92], which is a process algebraic formalism. This

formalism can be processed using the mCL2 tool [93], which generates a

Figure 45 Model

transformation

technique for behaviour

analysis in the

repository framework

70 CHAPTER 4 BEHAVIOUR MODELLING TECHNIQUES

transition system (TS) that can be analysed, for example, in order to find

deadlocks and livelocks.

Relevance to this thesis

Figure 46 shows that we considered the transformations supported by the

repository framework as horizontal transformations that can be positioned

at the SDCM abstraction level of our approach.

P
la

tf
o

rm
-S

p
ec

if
ic

M
o

d
el

 (
P

SM
)

D
es

ig
n

P
la

tf
o

rm
-I

n
d

ep
e

n
d

e
n

t
M

o
d

el
 (

P
IM

)
D

es
ig

n

Target platform selection

SSSSSS

T1T1

T2T2

T3T3

SDRMSDRM

SDCMSDCM

PSMPSM

Raedts et al.

BPMN
process
models

extended Petri Nets
OR

classical Petri Nets

mCRL2
(process
algebra)

The transformations depicted in Figure 46 are not refinements, which

convert from a model at a certain abstraction level to a more detailed model

at a lower abstraction level, but migration transformations, which convert a

model in a certain language to an equivalent model in another language at

the same abstraction level. By using this type of transformation, the

repository framework allows performing analysis that otherwise would not

be possible, such as automatic verification and validation of behavioural

properties on BPMN models. We have positioned these transformations at

the SDCM level, since they are applied to process models that describe the

concrete behaviour of processes that participate in business interactions.

This corresponds to our component model, in which each component of

our architecture performs a process with internal activities.

4.5 A Formal Semantics for BPMN Analysis and Execution

The Business Process Modelling Notation (BPMN) [94] is a standard

notation for modelling business processes promoted by OMG. Although the

Figure 46 Positioning of

Raedts et al. with

respect to our

abstraction levels

 A FORMAL SEMANTICS FOR BPMN ANALYSIS AND EXECUTION 71

BPMN syntax is comprehensively documented in a specification document

[95], the BPMN semantics is only described informally in this specification.

Therefore, the work proposed in [96] aims at defining a formal semantics

for BPMN. This semantics is then used both for analysis and execution

purposes [97-98]. Figure 47 shows a transformation from BPMN to Petri

Nets, which allows BPMN models to be formally analysed in terms of their

semantic correctness, for example to detect deadlocks and livelocks. Figure

47 shows a transformation from BPMN to a YAWL [99], which is a

workflow definition language that extends Petri Nets with several high-level

features. This transformation allows BPMN models to be executed in a

YAWL workflow engine and be analysed by simulation, animation and

execution.

YAWL
workflow engine

BPMN
semantics

Petri Nets

AnalysisAnalysis

Execution,
analysis

In [97], the transformation from BPMN (1.0) to the Petri Net formalism is

presented. Figure 48 shows that this transformation takes as input a BPMN

model in XMI [23], which is a standard file format for storing models. In

principle, XMI models that conform to the same meta-model are tool-

independent and can be seamlessly exchanged. This BPMN model is

automatically formalized in terms of a Petri Net according to the mappings

in [97], and exported in the Petri Net Markup Language (PNML) notation

[100], which is a standard file format to store Petri Nets models. The

PNML document can be used as input to Petri Nets analysis tools, such as

ProM [101], in order to verify some properties, such as, for example,

soundness, which states that for each state that can be reached from the

initial state of a process, a firing sequence exists that brings the system to its

final state.

Figure 47 BPMN

transformation

technique for analysis

and execution

72 CHAPTER 4 BEHAVIOUR MODELLING TECHNIQUES

Petri Nets model
(in PNML)

Petri Nets model
(in PNML)

BPMN model
(in XMI)

transformation
tool

BPMN metamodel
(in XMI)

input output

conforms to

analysis tool
(e.g. ProM)

input

deadlocks,
livelocks,

etc.

In some cases, such as for parallel multi-instance activities and OR-join

gateways, no mapping from BPMN to Petri Nets is possible, as explained in

[97]. Therefore, it is advisable to transform BPMN to some other

formalism, such as, for example, YAWL nets, which can be analysed for

correctness and, in addition, can also be simulated, animated and executed.

In order to achieve this, the work in [98] defines an execution semantics

for a subset of BPMN (2.0) in terms of graph rewrite rules, which are the

basic building blocks of graph transformations. As mentioned in Section

4.3, graph rewrite rules consist of a left-hand side, which defines the

condition in which a rule should be applied, and a right-hand side, which

defines what should be realised when the left-hand side is fulfilled. As

depicted in Figure 49, the formalization of BPMN in terms of graph rewrite

rules can be used to check the conformance of tools that implement the

BPMN execution semantics, such as the YAWL workflow engine of [96].

BPMN model
(in XPDL)

workflow engine
(e.g., YAWL)

workflow engine
(e.g., YAWL)

input

GrGen graph
rewrite tool

input
BPMN

execution
semantics

verification tool

Figure 49 shows that a BPMN model expressed in the XML Process

Definition Language (XPDL) [102] is used as input to a workflow engine

and the GrGen tool [103]. The XPDL format is used to facilitate the

interchange of business process models between multiple tools during the

business process lifecycle. Most BPMN editors allow exporting BPMN

models in XMI to the XPDL format. The GrGen tool implements the

BPMN execution semantics proposed in [98] in terms of graph rewrite

rules. As depicted in Figure 49, a verification tool can be used to verify

whether the execution behaviour of the model in the engine fulfils the

semantics described as graph rewrite rules.

Figure 48 BPMN to

Petri Nets transformation

for behaviour analysis

Figure 49 Conformance

verification of workflow

engines

 A PATTERN-BASED TECHNIQUE FROM BPMN TO BPEL 73

Relevance to this thesis

Figure 50 shows that we considered the transformation from BPMN process

models to Petri Nets as a horizontal transformation between models at the

same abstraction level, since BPMN models are transformed in semantically

equivalent models that can be formally analysed to verify their behaviour

correctness. Analogously to the transformation described in Section 4.4, we

positioned this horizontal transformation at our SDCM level, which

considers an application from the perspective of the internal behaviour of

interacting components (processes). Figure 50 also shows that the

transformation from BPMN process models to YAWL can be positioned as

a vertical transformation between models at different abstraction levels,

since these models can be executed using the YAWL workflow engine.

P
la

tf
o

rm
-S

p
ec

if
ic

M
o

d
el

 (
P

SM
)

D
es

ig
n

P
la

tf
o

rm
-I

n
d

ep
e

n
d

e
n

t
M

o
d

el
 (

P
IM

)
D

es
ig

n

Target platform selection

SSSSSS

T1T1

T2T2

T3T3

SDRMSDRM

SDCMSDCM

PSMPSM

Dijkman et al.

BPMN process models Petri Nets

YAWL

4.6 A Pattern-Based Technique from BPMN to BPEL

The work in [104] provides mappings from BPMN to BPEL [105]. The

motivation of this mapping is that, on one hand, BPEL is the de facto

standard for implementing business processes on top of web services, but it

is not appealing for analysts and designers in early stages of the process

lifecycle. On the other hand, BPMN is well understood by business analysts

and designers, since allows high level representation of business processes.

However, BPMN is not executable (yet) by workflow engines. Therefore,

the mapping from BPMN to BPEL should bridge the gap between business

specialists, who specifies processes at high-abstraction levels in BPMN and

Figure 50 Positioning of

Dijkman et al. with

respect to our

abstraction levels

74 CHAPTER 4 BEHAVIOUR MODELLING TECHNIQUES

technical experts, who implement these processes in BPEL. Figure 51 shows

the technique presented in [104], which has been developed in parallel to

the work in [106]. This technique is based on the transformation of graph-

oriented structural patterns in BPMN onto block-structured BPEL code.

Translation
algorithm

Translation
algorithm

Abstract
BPEL process

BPMN
process model

BPMN
process model

input

output

Executable
BPEL process

refinementrefinement

Generalised
FLOW-patterns

Well-structured
patterns

Quasi-structured
patterns

Tool support
(BPMN2BPEL)

BPEL engine

Figure 51 shows that a BPMN process model is taken as input for the

algorithm in [104], which processes the following three types of patterns:

1. well-structured patterns, such as “sequence” and “while”, which can be

directly mapped onto block-structured BPEL constructs,

2. quasi structured patterns, which can be easily reduced to well-structured

patterns and then translated to block-structured BPEL constructs, and

3. generalised flow-patterns, which need to be mapped onto combinations of

block-structured BPEL constructs with some additional control links.

The approach used by the algorithm consists of identifying well-structured

patterns in the BPMN process model (first the “sequence” well-structured

patterns and then all the other well-structured patterns), provide their

BPEL translation, and then fold these patterns into an atomic task. In case

there are no well-structured patterns left, the algorithm further looks for

quasi structured patterns. In case these patterns are all processed, the

algorithm finally searches for generalised flow-patterns, if there are any. An

Eclipse plug-in called BPMN2BPEL realises the automatic transformation of

most of the patterns described above.

As shown in Figure 51, the output of this mapping is an abstract BPEL

process, which captures the interactions with other processes (services), but

Figure 51 Pattern-based

technique from BPMN to

BPEL

 FORMAL ANALYSIS OF BPEL PROCESSES USING OWFN 75

lacks the internal behaviour that allows this process to be executed by a

BPEL engine. Therefore, this abstract BPEL process is a skeleton that

should be filled with further details towards an executable implementation.

Relevance to this thesis

Figure 52 shows that the BPMN process models used as source models for

the transformation described above can be positioned at the SDCM

abstraction level of our methodology. These BPMN models are then

translated with a vertical transformation to BPEL in order to be executed.

This BPMN to BPEL transformation is equivalent in purpose, i.e.,

execution using a workflow engine, to the vertical transformation from

BPMN to YAWL depicted in Figure 50.

P
la

tf
o

rm
-S

p
ec

if
ic

M
o

d
el

 (
P

SM
)

D
es

ig
n

P
la

tf
o

rm
-I

n
d

ep
e

n
d

e
n

t
M

o
d

el
 (

P
IM

)
D

es
ig

n

Target platform selection

SSSSSS

T1T1

T2T2

T3T3

SDRMSDRM

SDCMSDCM

PSMPSM

Ouyang et al.

BPMN process models

BPEL

4.7 Formal Analysis of BPEL Processes using oWFN

A BPEL process can be considered as a workflow enhanced by an interface

description that specifies how this process interacts with other processes,

called partners. In order to guarantee that a process and its partners interact

properly, the work in [107] proposes a technique to transform BPEL to

open workflow Nets (oWFN) [108], which are a special case of Petri Nets

that can be used to model the behaviour of a process interacting with other

processes. Figure 53 shows that this technique transforms a BPEL process to

oWFN model in order to verify that the process interacts correctly with its

Figure 52 Positioning of

Ouyang et al. with

respect to our

abstraction levels

76 CHAPTER 4 BEHAVIOUR MODELLING TECHNIQUES

partners, and to classical Petri Nets in order to analyse the internal

behaviour of the process.

BPEL
process
BPEL

process

BPEL2oWFN
tool

Fiona
tool

Fiona
tool

Open Workflow Nets
(oWFN)

Open Workflow Nets
(oWFN)

Petri NetsPetri Nets
Analysis

tools
Analysis

tools

…

INA tool

LoLA tool

……

INA toolINA tool

LoLA toolLoLA tool

flexible model
generation

Pattern
repository

Pattern
repository

The BPEL2oWFN tool [109] in Figure 53 transforms a BPEL process in an

oWFN model applying the so called approach of flexible model generation to

reduce the size of the generated oWFN model. With respect to a specific

property to be analysed, this approach minimizes the model as follows:

1. during the BPEL to oWFN transformation, the tool parses the BPEL

code in order to match it against some oWFN patterns stored in a

pattern repository, and

2. after the transformation, the tool applies structural reduction rules to

the generated model.

A collection of oWFN patterns gives the semantics for BPEL. This

semantics is complete, since it covers standard BPEL behaviour, exceptional

behaviour, such as fault and compensation, and all data aspects. In this way,

[107] provides a formal semantics for BPEL in terms of oWFN and a means

to create compact models that can be easily used for computer-aided

verification. Figure 53 shows that the generated oWFN model can be

analysed by the Fiona tool [110]. Figure 53 also shows that the

BPEL2oWFN tool supports the transformation to Petri Nets in several file

formats, such as LoLA, INA, PNML, etc., which can be analysed by

common model checking tools.

Relevance to this thesis

In Figure 54 we position the formal analysis of BPEL using oWFN at the

PSM level of our methodology, since we consider BPEL as a specific

technology for implementing business processes and not a modelling

language. The purpose of the work in [107] is to map the interactional

behaviour of BPEL processes onto oWFN, and the internal behaviour of

Figure 53

Transformation

technique for formal

analysis of BPEL

processes

 EXECUTION OF ISDL PROCESSES USING BPEL 77

these processes onto classical Petri Nets for behaviour analysis purposes.

Therefore, we consider these as horizontal transformations, since they

generate target models (oWFN or Petri Nets) that represent an equivalent

behaviour to the source models (BPEL processes), but using a formalism

that can be processed by automated tools.

P
la

tf
o

rm
-S

p
ec

if
ic

M
o

d
el

 (
P

SM
)

D
es

ig
n

P
la

tf
o

rm
-I

n
d

ep
e

n
d

e
n

t
M

o
d

el
 (

P
IM

)
D

es
ig

n

Target platform selection

SSSSSS

T1T1

T2T2

T3T3

SDRMSDRM

SDCMSDCM

PSMPSM

Lohamann et al.

BPEL
process
models

Open Workflow Nets (oWFN)
OR

classical Petri Nets

4.8 Execution of ISDL Processes using BPEL

The work in [111] proposes a technique for developing a distributed

application as a composition of services offered by the application

components. In order to realise this composition as an executable

orchestration from the perspective of a single component, support for

abstraction levels is provided in [111]. Business analysts can specify a

service composition as a business process among interacting participants

given some business requirements at a high abstraction level. Application

designers can create software applications that implement the interactions

specified by the business analyst at a lower abstraction level. However, a

correctness mechanism is necessary to ensure that implementation levels

preserve the behaviour intended at higher abstraction levels. Therefore,

[111] proposes a mechanisms of correctness-by-assessment, which allows one

to build an implementation and check its correctness afterwards against the

original requirements. In case this correctness is not (completely) satisfied,

the implementation needs to be revisited or rebuilt. This is in contrast with

the correctness notion used in this thesis, which is correctness-by-construction.

Figure 54 Positioning of

Lohamann et al. with

respect to our

abstraction levels

78 CHAPTER 4 BEHAVIOUR MODELLING TECHNIQUES

This notion guides the developer in the process of building an

implementation using transformation rules that enforce correctness.

Therefore, one builds implementations that are correct by construction.

Figure 55 shows the technique used in [111] to transform a service

composition model into an executable implementation on a Web Services

target implementation platform. The service composition model is

represented in ISDL (Interaction System Design Language) [48, 112-113],

which is a design language suitable to model distributed systems that allows

one to represent behavioural aspects of interacting components. The

executable implementation in Figure 55 is realised in BPEL, which allows

one to specify the service composition as an orchestration from the

perspective of a coordinator component. This coordinator is realised as a

BPEL process, which is exposed to its users as a service provider that offers

its services described in WSDL.

WSDL/BPEL-specific
service composition

model (in ISDL)

Executable
implementation
(in WSDL+BPEL)

ISDL2BPEL
transformation

tool

Service composition
model (in ISDL)

input

output

transformation
preparation

WSDL/BPEL-specific
service composition

model (in ISDL)

WSDL/BPEL-specific
service composition

model (in ISDL)

Executable
implementation
(in WSDL+BPEL)

Executable
implementation
(in WSDL+BPEL)

ISDL2BPEL
transformation

tool

ISDL2BPEL
transformation

tool

Service composition
model (in ISDL)

Service composition
model (in ISDL)

input

output

transformation
preparation

Figure 55 also shows that the ISDL to BPEL transformation is not

performed in a single step. First, a service composition model in ISDL needs to

be manually refined in another ISDL model annotated with some specific

WSDL/BPEL information. This refinement prepares the service

composition model for the next transformation step by producing a

WSDL/BPEL-specific service composition model. Afterwards, this model can

be automatically transformed by an ISDL2BPEL tool into an executable

implementation, which generates the BPEL process coordinator that

orchestartes the service composition, and the WSDL extensions to support

this process.

Figure 55

Transformation

technique from a service

composition in ISDL to

an executable

implementation in BPEL

 EXECUTION OF ISDL PROCESSES USING BPEL 79

Relevance to this thesis

Figure 56 shows how we have positioned the technique proposed in [111]

along the abstraction levels of our methodology. This technique copes with

consecutive refinements. A first refinement transforms ISDL abstract

interactions among components (partners) into more concrete ISDL

interactions, which take into account the internal behaviour of the involved

components (partners). Therefore, we positioned the ISDL abstract

interactions at our SDRM level and the more concrete ISDL interactions at

our SDCM level. A further refinement transforms the ISDL concrete

interactions to annotated ISDL interactions that we positioned at the PSM

level, since they annotate information specific to the chosen BPEL/Web

Services platform. These annotated interactions are finally translated into a

BPEL process model and the corresponding WSDL interfaces for

execution, which we could also position at the PSM level of our

methodology. Therefore, the considered technique proposes a vertical chain

of refinements from our SDRM level to the PSM level, as shown in Figure

56. Automatic support is provided for the transformation at the PSM level.

Concerning our SS level, the ISDL language could be suitable for the

purpose of modelling behaviour at this level.

P
la

tf
o

rm
-S

p
ec

if
ic

M
o

d
el

 (
P

SM
)

D
es

ig
n

P
la

tf
o

rm
-I

n
d

ep
e

n
d

e
n

t
M

o
d

el
 (

P
IM

)
D

es
ig

n

Target platform selection

SSS

T1

T2

T3

SDRM

SDCM

PSM

(concrete) ISDL service composition model

Dirgahayu et al.

annotated ISDL

WSDL/BPEL-specific service composition model

BPEL process & WSDL interfaces

(abstract) ISDL service composition model

P
la

tf
o

rm
-S

p
ec

if
ic

M
o

d
el

 (
P

SM
)

D
es

ig
n

P
la

tf
o

rm
-I

n
d

ep
e

n
d

e
n

t
M

o
d

el
 (

P
IM

)
D

es
ig

n

Target platform selection

SSSSSS

T1T1

T2T2

T3T3

SDRMSDRM

SDCMSDCM

PSMPSM

(concrete) ISDL service composition model

Dirgahayu et al.

annotated ISDL

WSDL/BPEL-specific service composition model

BPEL process & WSDL interfaces

(abstract) ISDL service composition model

Figure 56 Positioning of

Dirgahayu et al. with

respect to our

abstraction levels

Chapter 5
5. Techniques Comparison and

Selection

This chapter proposes three behaviour modelling solutions adopted in this
thesis to instantiate our methodology. These solutions arise from a
comparison among the behaviour modelling techniques discussed in
Chapter 4 in the light of some evaluation criteria. These criteria are based
on the general concepts and terminology introduced in Chapter 2.

This chapter is organised as follows: Section 5.1 introduces our
evaluation criteria, and, based on these criteria, Sections 5.2 to 5.4 discuss
the behaviour modelling techniques presented in Chapter 4. Section 5.5
compares these techniques and selects those that are suitable for our
methodology. Based on the selected techniques, Section 5.6 proposes three
possible solutions that we have experimented with in our research. These
solutions are discussed in details in Chapters 6 to 9.

5.1 Evaluation Criteria

In order to instantiate the methodology presented in Chapter 3, we need to
prescribe one (or more) language for behaviour modelling at different
abstraction levels. We have defined several abstraction levels, from abstract
service specifications to executable implementation, each of them with an
increasing degree of technical detail. Therefore, several languages can be
necessary, ranging from abstract modelling notations to running code. This
section presents the criteria1 we have adopted to evaluate the modelling
techniques presented in Chapter 4 in order to select a suitable language(s)
for our purpose.

1These are qualitative criteria that we have selected based on our experience and relevance
to this thesis.

82 CHAPTER 5 TECHNIQUES COMPARISON AND SELECTION

Suitability

Since models always have a purpose (see Section 2.1.2) the language used to

represent these models should be suitable for the chosen purpose. Since

our models have the purpose to represent the system behaviour, the

suitability criterion determines whether a certain language gives the means to

represent behavioural aspects of the system under development. We have

also identified some sub-criteria of suitability, which consists of appeal to

intuition and scalability. The appeal to intution criterion determines whether

the considered language is intuitive to learn and use for system developers.

The scalability criterion determines whether the considered language

provides supports to master complexity of behavioural models when the

system under development becomes bigger.

Separation of concerns

The capability of an application design to adapt to possible changes in the

technology platform on top of which the application is deployed is a

desirable feature in service development. This can be achieved through the

separation of application functionality concerns at the PIM level, and

technology concerns at the PSM level (see Section 2.1.1). The separation of

concerns criterion determines whether a certain technique supports this

separation of PIM and PSM concerns.

Support for abstraction levels

A design with only one abstraction level would bring either to a model

understandable by humans, but with insufficient technical details to be

executed by machines, or to a model with all the necessary details to be

executed by machines, but hard to understand by humans. Therefore, the

decomposition in several abstraction levels that incrementally add technical

details towards specific implementations is a desirable feature in a

development process (see Section 2.1.6). The support for abstraction levels

criterion determines whether a certain technique supports this

decomposition.

Metamodelling

This thesis focuses on metamodel-based transformations (see Section 2.1.3)

and the metamodelling criterion addresses the availability of a metamodel of

the considered language(s) in order to possibly automate model

transformations based on this language(s). The availability of an Ecore

version of the metamodel is evaluated positively, since it allows us to

execute model transformations in an Eclipse-based environment with tools

such as, for example, the ATL and the mediniQVT engines.

 EVALUATION CRITERIA 83

Reusabilility

In order to identify best practises that can be reused in other steps of the

same development process or, possibly, in the development process of new

applications instead of starting from scratch (see Section 2.1.4), the

reusability criterion determines whether a certain technique support reuse.

For example, the explicit usage of patterns is evaluated positively.

Formal support

Although most of the existing modelling languages have a well-defined

syntax, these languages often lack formal semantics and, consequently, do

not have the basis for automatic verification and validation of behavioural

models (see Section 2.1.2). The formal support criterion determines whether

a formal syntax, both concrete and abstract, and a formal semantics are

available for the considered language.

Behaviour correctness

Since systems should behave in the way they are intended to behave, the

correctness of models that represent system behaviour should be

guaranteed during the development process, possibly already in early stages,

by analizing and simulating this behaviour before carrying on with its

implementation (see Section 2.1.6). The behaviour correctness criterion

determines wheteher behaviour analysis, simulation and excution is possible

using the considered language.

Tool support

The tool support criterion determines whether a certain technique and the

adopted language(s) are supported by a proper development environment

to represent, transform, simulate, verify and possibly also execute the

system behaviour. In other words, this criterion determines what level of

automation can be reached by using the considered technique (see Section

2.1.5). Tool support available for public use, easy to get, and well-

documented is evaluated positively.

Evaluation approach

In order to evaluate the techniques discussed in Chapter 4 according to the

criteria mentioned above, we have combined these criteria in three groups

as follows:

– The first group consists of language suitability related criteria, namely

the suitability criterion and its appeal to intuition and scalability sub-

criteria.

84 CHAPTER 5 TECHNIQUES COMPARISON AND SELECTION

– The second group consists of methodological support related criteria,
namely the separation of concerns, support for abstraction levels,
metamodelling and reusability criteria.

– The third group consists of automation related criteria, namely the
formal support, behaviour correctness and tool support criteria.

For each of these groups we provide a table with the considered criteria in
the left side and the techniques under evaluation on top of the table. We
evaluate with the symbols • and •• when a given technique addresses a
certain criterion partially or completely, respectively. In contrast, the
symbol X indicates that the considered technique does not explicitly address
or does not provide support for the given criterion2.

5.2 Language Suitability

Table 1 shows an evaluation of the modelling techniques described in
Chapter 4 according to the suitabilty criterion and its sub-criteria, namely
appeal to intuition and scalability.

Uc
hi

te
l e

t a
l.

H
ar

el
 e

t a
l.

En
ge

ls
 e

t a
l.

Ra
ed

ts
 e

t a
l.

Di
jk

m
an

 e
t a

l.

Ou
ya

ng
 e

t a
l.

Lo
hm

an
n

et
 a

l.

Di
rg

ah
ay

u
et

al

.

Suitability •• •• • • •• • • ••

Appeal to Intuition X • • • • • X •

Scalability X • • •• • • •• •

Uchitel et al.
The state machine-based formalism of LTSs and MTSs proposed by Uchitel
et al. is highly suitable for behaviour representation purposes, especially to
handle synchronization and concurrency issues of interacting components.
Therefore, we assign score •• to the suitability criterion. Concerning the
appeal to intuition criterion, the synthesis from properties and scenarios
technique scores low since it makes use of several modelling notations and
formalisms, which requires a lot of expertise since one should be
knowledgeable of MSCs, FLTL, LTSs, and MTSs in order to apply this
technique. Concerning scalability, state machines-based formalisms, such as

2The evaluation of the considered techniques according to our criteria is based on personal
judgement.

Table 1 Evaluation
based on language
suitability related criteria

 LANGUAGE SUITABILITY 85

LTSs and MTSs, are well known to cause state explosion when dealing with

large applications. Therefore, we assign score X to the scalability criterion.

Harel et al.

LCSs introduced by Harel et al. (see Section 4.2) support high suitability

for behaviour representation. For example, LCSs allow one to distinguish

between scenarios that may (possible behaviour) and must happen

(required behaviour), and to represent forbidden behaviours and parallel

events. Concerning appeal to intuition, LSCs are graphical and follow the

sequence diagrams style, which is intuitive for software engineers. However,

as stated in [114], LSCs require a learning curve despite the intuitive

method for capturing requirements supported by the play-in mechanism,

hence, the • score for this criterion. Concerning scalability, a benefit of

LSCs is that they support modularity, since they allow one to represent each

scenario with a diagram, which can in turn interact with other

scenarios/diagrams. However, their drawback is the high number of

diagrams running together, which makes large applications difficult to

inspect. Therefore, we evaluate scalability as partially supported by LCSs.

Engels et al.

In Engels et al. (see Section 4.3), UML is used as modelling notation for

behaviour representation. UML provides a collection of diagrams that can

be used to document the design of software systems (descriptive use) or to

guide the realisation of these systems (prescriptive use). In its prescriptive

use, UML is suitable to generate the structural part of an application by

using class diagrams and partial behavioural aspects by combining several

types of diagrams, such as use cases, sequence, activity, and object diagrams.

This use of several types of diagrams can lead to inconsistencies because of

the lack of an unambiguous formal semantics in UML [40]. Therefore, we

evaluate the suitability only as partial. The appeal to intuition scores as •,

since a benefit of using UML is that it is intuitive and well-known by

software engineers. As a drawback, the story-driven technique needs some

expertise in coordinating the use of several types of diagrams and notations,

including graph rewrite rules and even pieces of Java code in the story

diagrams. Concerning scalability, the separation in several types of UML

diagrams makes the specification modular, but fragmented as well,

especially in case of large applications. Therefore, we evaluate scalability as

partially supported.

Raedts et al.

Raedts at al. (see Section 4.4) uses BPMN as modelling notation for

business processes. We consider BPMN 2.0 as a suitable notation for

representing the system behaviour. However, the proposed technique uses

86 CHAPTER 5 TECHNIQUES COMPARISON AND SELECTION

BPMN 1.0, which lacks some important features, such as the possibility to

represent choreography diagrams. Therefore, the suitability criterion is

evaluated only as partially supported for this technique. Concerning appeal

to intution, BPMN is an intuitive modelling notation, especially for business

experts. However, BPMN is used in combination with other formalisms,

such as Petri Nets and mCRL2, which are less intuitive to learn and use.

Therefore, the appeal to intution criterion scores as • in our evaluation.

Concerning scalability, although business process models tend to easily

grow out of proportion, BPMN provides mechanisms to collapse elements,

which can help reduce model size. Moreover, reduction techniques are used

in the framework proposed by Raedts et al. to handle size and complexity of

the generated Petri Nets models. Therefore, we assign score •• to the

scalability ctiterion.

Dijkman et al.

Dijkman et al. (see Section 4.5) also uses BPMN. As explained above, this is

a successful choice in terms of suitability for behaviour representation.

However, some parts of the technique proposed by Dijkman et al. still use

BPMN 1.0 and some important features cannot be exploited when using

this old version. Since more recent work [98] translates and improves the

previously achieved results to version 2.0, we evaluate the suitability

criterion as fully supported. The appeal to intuition and scalability criteria

score both as • because of the benefits of BPMN that we have already

discussed above.

Ouyang et al.

Ouyang et al. (see Section 4.6) translates BPMN process models to

executable models represented in BPEL. Since this technique applies

BPMN version 1.0, we evaluate the suitability for behaviour representation

only as partial. The appeal to intuition and scalability criteria score both as •

because of the benefits of BPMN that we have already discussed above.

Lohmann et al.

Lohmann et al. defines BPEL semantics in terms of oWFN and Petri Nets

(see Section 4.7). We consider BPEL suitable to represent behavioural

aspects and concurrency issues, but at implementation level, which is not

the scope of this thesis. Although we consider oWFN and Petri Nets

suitable for representing concurrent behaviour of distributed systems, we

see them more suitable for behaviour analysis purposes than for application

requirements modelling purposes. Therefore, we evaluate the suitability of

the considered technique as partial. The appeal to intuition criterion scores

low, since one has to work at the code level with BPEL, which is not

intuitive for non-technical stakeholders, such as business analysts and

 METHODOLOGICAL SUPPORT 87

managers. Concerning the scalability criterion, it scores as fully supported

for two reasons: (1) BPEL, analogously to BPMN, provides some way of

collapsing elements that can help reducing the model size; (2) the

considered technique uses the concept of flexible model generation to

minimize the generated oWFN/Petri Nets models during and also after the

translation to BPEL. In contrast, standard Petri Nets techniques use tools

that help scalability with reduction techniques only after the translation to

Petri Nets.

Dirgahayu et al.

Dirgahayu et al. (see Section 4.8) uses ISDL, which is highly suitable to

model behavioural aspects in terms of causality relations between

interactions. We evaluated the appeal to intuition criterion as partially

supported, since the usage of ISDL implies some benefits and drawbacks.

The main benefit is that ISDL is a quite intuitive graphical language.

However, it still requires a learning curve, which may be not justified

because ISDL does not have a widespread adoption, such as, for example,

UML or BPMN. Concerning scalability, although the refinements described

in [111] seem to grow as the examples become more complex, the ISDL

allows one to define composable behaviour modules in order to master the

complexity and facilitate the understanding of the resulting behaviour

diagrams. Therefore, we evaluated the scalability criterion as partially

supported.

5.3 Methodological Support

Table 2 shows an evaluation of the modelling techniques described in

Chapter 4 according to the separation of concerns, support for abstraction

levels, metamodelling and reusability criteria.

88 CHAPTER 5 TECHNIQUES COMPARISON AND SELECTION

U
c
h
it

e
l
e
t
 a

l.

H
a
r
e
l
e
t
 a

l.

E
n
g
e
ls

 e
t
 a

l.

R
a
e
d
t
s
 e

t
 a

l.

D
ij
k
m

a
n
 e

t
 a

l.

O
u
y
a
n
g
 e

t
 a

l.

L
o
h
m

a
n
n
 e

t
 a

l.

D
ir

g
a
h
a
y
u
 e

t

a
l.

Separation of

concerns

 •• •• •• X •• •• X ••

Support for abstraction

levels

• • X X X X X ••

Metamodelling X X •• •• •• •• X ••

Reusability X X X • • •• •• ••

Uchitel et al.

We positioned the generation of state transition systems from properties

and scenarios at the PIM level of the design process (see Section 4.1). The

work in [70] proposes a complementary technique to Uchitel et al. that can

be positioned at the PSM level. This technique creates BPEL

implementations that can be checked against UML-like abstract

specifications. Therefore, the separation of concerns criterion is full

supported and we assigned score •• to this criterion. Concerning support

for abstraction levels, this criterion scores as • since there is only partial

support, namely for our SDRM and SDCM abstraction levels, as shown in

Figure 38. LTSs and MTSs are more suitable for the specification of detailed

behaviours that are already distributed to components, such as our SDCM,

and less suitable for the specification of more abstract behaviours, as in the

case of our SS. There are no available metamodels, since the transformation

from sequence charts to transition systems uses synthesis algorithms

implemented in Java. The reusability criterion is not explicitly addressed.

Harel et al.

We positioned the generation of LSCs using the play-in/play-out approach

at the PIM level of the design process (see Section 4.2). Although the

transformation is still under development, AspectJ code can be generated at

the PSM level from LSCs at the PIM level. Alternatively, it is possible to

transform these LSCs in state charts, and then generate, for example, Java

code. Therefore, the separation of concerns criterion is full supported and

we assigned score •• to this criterion. Concerning the support for

abstraction levels criterion, our SS and SDRM levels are supported by the

play-in and play-out phases of the approach, respectively (see Figure 41).

However, there is no support for our SDCM level, hence, the support for

abstraction levels is partial and this criterion scores as •. The metamodelling

and reusability criteria score both as a X. To the best of our knowledge,

Table 2 Evaluation

based on

methodological support

related criteria

 METHODOLOGICAL SUPPORT 89

there is no metamodel provided for LSCs, except for the excerpt in [115]

and the attempt in [116], which actually required us a lot of effort to be

found. The play-in/play-out approach does not explicitly address the

reusability criterion.

Engels et al.

In Engels et al., the separation of concerns criterion scores high since the

considered technique clearly distinguishes a modelling phase at the PIM

level and a realisation phase at the PSM level. However, there is no support

for abstraction levels (see Figure 44), since the development process starts

directly at the SDCM level by designing a platform-independent model of

the architecture that implements the application. The story-driven

modelling technique uses UML diagrams and, therefore, the metamodelling

criterion is fully supported, since UML metamodels are available.

Moreover, excerpts of UML activity and TAAL metamodels used in this

technique can be found in [82]. The reusability criterion is not explicitly

addressed in the story-driven modelling technique.

Raedts et al.

We considered the model transformations supported by the repository

framework in Raedts et al. as horizontal transformations that do no provide

separation of PIM and PSM concerns, nor support for abstraction levels

(see Figure 46). Therefore, both these criteria are not supported and we

assigned score X to them. In contrast, metamodelling is fully supported and

scores high, since metamodels are available both for BPMN [95] and Petri

Nets Markup Language (PNML) that are used in the repository framework.

For PNML, an Ecore version is also available [117]. The transformation

from BPMN to Petri Nets provides some mechanism for reuse using

mapping rules [86], hence, the reusability criterion is (partially) supported.

Dijkman et al.

We considered the two model transformations supported by Dijkman et al.

as a horizontal and a vertical transformation, which are realised for

behaviour analysis and execution purposes, respectively (see Section 4.5).

The horizontal transformation from BPMN to Petri Nets does not

contribute to the separation of PIM and PSM concerns or support for

abstraction levels either, since it transforms between models at the same

abstraction (PIM) level (see Figure 50). The vertical transformation to

YAWL provides a way to execute at the PSM level the BPMN models that

are created at the PIM level, hence, it supports the separation of concerns

criterion, which is assigned with score ••. Concerning support for

abstraction, the modelling phase starts directly with BPMN process models,

which we positioned at our SDCM level (see Figure 50), namely the lowest

90 CHAPTER 5 TECHNIQUES COMPARISON AND SELECTION

abstraction level of platform-independence in our design. Therefore,

abstraction at the PIM level is not supported. Metamodels are available, also

in Ecore version, for BPMN, Petri Nets Markup Language (PNML), and

YAWL that are used by Dijkman et al. in this technique. Therefore, the

metamodelling criterion scores as fully supported. The technique supports

reusability, due to the mapping rules from BPMN to Petri Nets provided in

[97].

Ouyang et al.

We positioned the transformation from BPMN models to BPEL code

supported by Ouyang et al. as a vertical transformation from PIM to PSM

levels (see Figure 52), which, hence, fully supports the separation of

concerns criterion. Abstraction at the PIM level is not supported for the

reasons mentioned above, namely the usage of BPMN processes as the only

models at the PIM level. Metamodelling is fully supported since Ecore

versions of the BPMN and BPEL metamodels are available. Since the

technique is entirely developed on patterns for reuse, the reusability

criterion is fully supported and scores ••.

Lohmann et al.

In Lohmann et al., the separation of concerns and abstraction levels are not

supported, since the proposed transformations focus on the BPEL code at

the PSM level without addressing modelling and design concerns at the PIM

level. Concerning metamodelling support, the transformation from BPEL

to oWFN provides translation algorithms, but a metamodel for oWFN is

not provided. Therefore, this criterion scores X. In contrast, reusability is

completely supported, since the technique in [107] is based on the

translation of BPEL patterns into Petri Nets patterns, which are afterwards

composed into an oWFN model.

Dirgahayu et al.

In Dirgahayu et al., the separation of concerns criterion is fully supported

since the technique explicitly separates the PIM and PSM levels.

Concerning abstraction levels, the ISDL used in this technique can support

all our abstraction levels, hence, this criterion scores ••. Metamodelling is

supported since Ecore versions for both ISDL and BPEL metamodels are

available. The reusability also scores high, since explicitly addressed in the

technique by using the so called interaction pattern refinement concept [111].

 AUTOMATION 91

5.4 Automation

Table 3 shows an evaluation of the modelling techniques discussed in

Chapter 4 according to the formal support level, behaviour correctness, and

tool support criteria.

U
c
h
it

e
l
e
t
 a

l.

H
a
r
e
l
e
t
 a

l.

E
n
g
e
ls

 e
t
 a

l.

R
a
e
d
t
s
 e

t
 a

l.

D
ij
k
m

a
n
 e

t
 a

l.

O
u
y
a
n
g
 e

t
 a

l.

L
o
h
m

a
n
n
 e

t
 a

l.

D
ir

g
a
h
a
y
u
 e

t

a
l.

Formal support •• •• • •• •• •• •• ••

Behaviour correctness •• •• • •• •• • • •

Tool support • • •• X • • •• •

Uchitel et al.

The formal syntax and semantics for the adopted MSCs diagrams is well

defined in terms of LTSs in [118]. Therefore, the formality level is fully

supported and scores ••. Concerning behaviour correctness, this technique

scores high for several reasons: (1) it supports verification of trace

equivalence between two transitions systems generated from an abstract

MSC specification and a BPEL implementation, respectively. In this way, it

is possible to validate whether the BPEL code satisfies its MSC

specifications; (2) it applies model-checking techniques to verify liveness

properties and the absence of deadlocks; (3) it allows behaviour simulation

and execution using the LTSA and MTSA tools. Concerning tool support,

although the technique is supported by the mentioned tools, automatic

generation of code at the PSM level is not possible, since the BPEL

implementation needs to be manually developed by an expert [70].

Therefore, we evaluated the tool support as partial and assigned score • to

this criterion.

Harel et al.

The formal support scores high for LSCs of Harel et al., since the complete

LSC syntax and semantics are formally defined in [73, 119]. Further work

on LSCs semantics can be found in [120-121], in which mappings of LSCs

onto temporal logic are presented. Also behaviour correctness scores high,

due to the extensive support for behaviour analysis of LCSs proposed in

[115, 122]. Moreover, Play out is an excellent mechanisms to simulate the

system behaviour at the PIM level, and smart play-out [71] provides

verification methods, mainly model-checking, to execute and analyse LSCs.

Concerning tool support, the play engine is quite an old tool and supports

Table 3 Evaluation

based on automation

related criteria

92 CHAPTER 5 TECHNIQUES COMPARISON AND SELECTION

simulation of behaviour but not implementation. Its successor, which is the

Eclipse-based tool playGo, is currently under development. Therefore, we

evaluate tool support only as partial.

Engels et al.

Although the abstract and concrete syntax of UML is well defined in a

standard document [22], the UML semantics is only defined in natural

language in a fragmented style and sometimes even inconsistently [40]. The

story-driven modelling technique by Engels et al. compensates this lack of

semantics by defining mappings of UML activity diagrams [123] and TAAL

[83] onto transition systems. Since these mappings are limited to UML

activity diagrams and TAAL, the formal support is evaluated as partial and

scores •. Analogously, behaviour correctness is evaluated as partially

supported, since the (limited) UML activity diagrams and TAAL semantics

can be used to perform behaviour analysis by using model-checkers, such as

Groove. Moreover, behaviour execution at the PIM level is not supported

since the story-driven technique mainly focuses on the generation of

running Java code. Finally, the tool support scores high. The Fujaba tool

supports both code generation and round-trip engineering, while the

Groove tool supports validation and verification of behavioural models.

Raedts et al.

Since the repository framework of Raedts et al. focuses on the formalism,

analysis and simulation of business process models, it scores high

concerning the formal support and behaviour correctness criteria. Although

the work in [85-86] claims complete tool support for the transformations,

it does not provide any information about where to find these

transformation tools. Since we could not find these tools, we assigned X to

the tool support criterion.

Dijkman et al.

The formal support of the technique by Dijkman et al. scores high, since

the syntax and semantics of BPMN are well defined in [97-98]. Particularly,

the BPMN semantics is defined in terms of Petri nets for behaviour analysis

purposes, and in terms of YAWL for more advanced behaviour analysis and

execution purposes. Therefore, also the behaviour correctness criterion is

evaluated as fully supported. Eclipse-based tool support is available in terms

of a BPMN to Petri nets transformer, and a BPMN to YAWL transformer

[96]. However, these tools do not currently support BPMN version 2.0.

Therefore, the tool support criterion is evaluated as partially supported.

 AUTOMATION 93

Ouyang et al.

The formal support by Ouyang et al. scores high, since it is based on BPMN

and BPEL, which have well defined syntax and semantics. Behaviour analysis

of BPMN process models is possible by complementing this approach with

the transformation from BPMN to Petri Nets realised by Dijkman et al.

Moreover, in order to check the correctness of a BPEL process, one should

make a reverse transformation from BPEL to BPMN using the patterns in

[124], exploit the BPMN to Petri Nets transformation of Dijkman et al.,

and use the automatic tools for behavioural analysis on these generated

Petri nets. Since this mechanism is not straightforward, we evaluated

behaviour correctness support (at the PIM level) as partial. The tool

support criterion also scores as partial since an Eclipse-based BPMN2BPEL

tool is available for automating the transformation, but it currently does not

support BPMN version 2.0.

Lohmann et al.

The formal support by Lohmann et al. scores high, since it is based on

oWFN, Petri Nets and BPEL, which have well defined syntax and

semantics. The tool support criterion also scores high, while behaviour

correctness is evaluated as partially supported. This is because the Fiona

tool can be used to verify the correctness of the oWFN generated from the

source BPEL processes, as well as several automated tools and model

checkers can be used for analysis purposes on the classical Petri Nets

generated from the same BPEL processes. However, it is not possible to

simulate system behaviour at the PIM level before investing in

implementation at the PSM level, since the PIM level is not considered in

this technique.

Dirgahayu et al.

The full concrete syntax of ISDL used by Dirgahayu et al. is defined in

[113], and its semantics is formally defined in [112], hence, the formal

support scores high. The behaviour correctness criterion is partially

supported since, as discussed in Section 4.8, the technique checks

correctness by assessment, namely whether a set of conformance

requirements are satisfied, and not by construction, like in the case of this

thesis. Moreover, behaviour execution at the PIM level is possible since

simulation of ISDL is supported, as discussed in [125]. The tool support

scores as partial since, although the work in [111] claims tool availability for

transforming ISDL into BPEL, a link to this tool is not provided. The tool

could be obtained though after contacting the authors.

94 CHAPTER 5 TECHNIQUES COMPARISON AND SELECTION

5.5 Comparison and Selection

For comparison purposes, Table 4 shows the analysed behaviour modelling

techniques with respect to all our evaluation criteria.

U
c
h
it

e
l
e
t
 a

l.

H
a
r
e
l
e
t
 a

l.

E
n
g
e
ls

 e
t
 a

l.

R
a
e
d
t
s
 e

t
 a

l.

D
ij
k
m

a
n
 e

t
 a

l.

O
u
y
a
n
g
 e

t
 a

l.

L
o
h
m

a
n
n
 e

t
 a

l.

D
ir

g
a
h
a
y
u
 e

t

a
l.

Suitability •• •• • • •• • • ••

Appeal to Intuition X • • • • • X •

Scalability X • • •• • • •• •

Separation of

concerns

 •• •• •• X •• •• X ••

Support for abstraction

levels

• • X X X X X ••

Metamodelling X X •• •• •• •• X ••

Reusability X X X • • •• •• ••

Formal support •• •• • •• •• •• •• ••

Behaviour correctness •• •• • •• •• • • •

Tool support • • •• X • • •• •

Uchitel et al.

The behaviour synthesis from properties and scenarios technique of Uchitel

et al. offers an interesting solution, especially due to the high suitability of

the employed formalism of transition systems, and the high formal support

that can be exploited for behavioural analysis and model checking purposes.

Therefore, we selected it as a suitable solution. However, the main problem

with this solution consists of the lack of support for the specification of

high level abstract behaviours that are not assigned to architectural

components, such as our SS models, as shown in Figure 38. Therefore,

support was necessary to extend this technique in order to cover also our

SS level. We present our extension to this technique in Section 5.6.2.

Harel et al.

The play-in/play-out approach of Harel et al. offers a complete solution

that provides us with a suitable language (LSCs) for behaviour

representation, and support for abstraction levels, including our SS level, as

shown in Figure 41. Therefore, it is a suitable solution for our purposes, i.e.,

Table 4 Comparison of

behaviour modelling

techniques

 COMPARISON AND SELECTION 95

modelling, simulating, and executing application behaviour in an automatic

way, from high level requirements towards final implementations. However,

we did not adopt it for the following reasons:

1. There is no metamodel provided for LSCs, which is a main drawback

since the focus of this thesis consists of automating model

transformations using (Ecore) metamodels.

2. Although the approach is highly automated, we could not exploit the

benefits of this automation. At the time of selecting the tool support for

our research, the only available tool was the play engine, while the more

interesting PlayGo tool was under development. We believe that the

Eclipse-based PlayGo tool is a main improvement for the adoption of the

play-in/play-out approach by a broader community.

Therefore, we did not use either the formalism of LSCs or the technology

of the play engine to represent and realise our models and transformations.

However, the following ideas of the play-in/play-out approach have inspired

the research carried out in this thesis: (1) the raise of the abstraction level

in the specification of the system requirements, which is realised in our SS

level, (2) the early execution of the system behaviour for simulation

purposes, which is realised in our SDRM and SDCM levels, and (3) the

implementation of the expected system behaviour, which is realised in our

PSM level, possibly in an automatic manner without the intervention of a

technical developer.

Engels et al.

The story-driven modelling technique of Engels et al. is a valuable example

of how behavioural aspects of the application under development can be

considered already at the PIM level of the design process. However, this

technique lacks support for abstraction levels, since the PIM design does

not consider behavioural refinements but directly starts the development

process by defining a model of the architecture that implements the

application (our SDCM level, see Figure 44). Moreover, we believe that

there are more suitable notations than the employed UML-style diagrams

to model the system behaviour at the PIM level [40]. Therefore, we did not

adopt the story-driven technique in this thesis.

Raedts et al., Dijkman et al. and Ouyang et al.

The BPMN-based techniques of Raedts et al., Dijkman et al. and Ouyang et

al. focus on the transformation of BPMN business process models to

equivalent formalisms for behavioural analysis and execution purposes. As

shown in Table 4, all these techniques lack support for (SS and SDRM)

abstraction levels. This had inspired our research, since BPMN 2.0 offers

the possibility to specify choreography diagrams that allow one to model the

96 CHAPTER 5 TECHNIQUES COMPARISON AND SELECTION

behaviour of participants in business interactions. These choreography

diagrams provided us with a means to represent our SS and SDRM levels.

Moreover, elements of these BPMN-based tecniques could be beneficially

incorporated in our work. For example, the transformations from BPMN to

executable languages, such as BPEL (Ouyang et al.) and YAWL (Dijkman et

al.), could be exploited to generate executable models at our PSM level,

while the transformations from BPMN to Petri Nets (Dijkman et al.) could

be used to generate equivalent PIM models for automated behaviour

analysis and model checking. Therefore, we selected BPMN as a suitable

notation. We discarded the solution proposed by Raedts et al. due to the

lack of tool support. We present a solution that uses BPMN in Section

5.6.3.

Lohmann et al.

The work of Lohmann et al. provides a promising solution for verifying that

interacting BPEL process models preserve behaviour correctness. However,

this solution is limited to the PSM level of our approach, as shown in Figure

54. Since our work focuses on PIM level behaviour refinements, this

solution does not meet our purposes completely. However, as a partial

solution, the BPEL to oWFN transformation could be used in combination

with another strategy that allows behaviour modelling at the PIM level, as

proposed in Section 5.6.3.

Dirgahayu et al.

The solution proposed by Dirgahayu et al. scores high with respect to all the

considered criteria. Therefore, we considered it as a suitable solution that

could be used throughout the whole methodology, as illustrated in Section

5.6.1.

5.6 Proposed Solutions

This Section describes how the solutions selected in Section 5.5 could be

extended in order to be used in our methodology. Figure 57 to Figure 59

show our proposals. In chronological order, we first experimented with

ISDL, since it was the language adopted in the context of the A-MUSE

project [61], in which the first part of this research was carried out. Since

our methodology is language-independent, we applied it also to the

synthesis from properties and scenarios technique of Uchitel et al.

Moreover, although successful, the choice of ISDL as the only modelling

notation for our methodology would have limited our work to a language

that is not commonly adopted. Therefore, we used the acquired knowledge

to experiment with the BPMN standard, which appears to be gaining

 PROPOSED SOLUTIONS 97

popularity in both academia and industry, and is supported by different

tools from different vendors.

5.6.1 Behaviour refinements with A-MUSE DSL and ISDL

In parallel to the work of Dirgahayu et al., we have developed a solution

that allows the representation of our SS and SDRM levels by using the A-

MUSE Domain Specific Language (DSL). The A-MUSE DSL is a profile of

ISDL that provides support for representing abstract actions that are not

already distributed to individual components or business partners. Figure 57

shows this solution and highlights our contribution.

P
la

tf
o

rm
-S

p
ec

if
ic

M
o

d
el

 (
P

SM
)

D
es

ig
n

P
la

tf
o

rm
-I

n
d

ep
e

n
d

e
n

t
M

o
d

el
 (

P
IM

)
D

es
ig

n

Target platform selection

SSSSSS

T1T1

T2T2

T3T3

SDRMSDRM

SDCMSDCM

PSMPSM

ISDL

Dirgahayu et al.

annotated ISDL

WSDL/BPEL-specific service composition model

BPEL process & WSDL interfaces

A-MUSE DSL

A-MUSE DSL

Our contribution

An Eclipse-based editor for A-MUSE DSL is available [126] that allowed us

to create Ecore versions of our SS and SDRM models. We have used these

Ecore models to automatically develop the transformation step T
1
 in Figure

57. To achieve this aim, we have chosen the medini QVT tool [39], which

consists of an Eclipse-based engine that implements the

Query/View/Transformation (QVT) Relations standard [24] defined by

OMG for mode-to-model transformations. By providing as input to the

QVT engine: (1) the A-MUSE DSL metamodel, as both source and target

metamodel, (2) the service specification SS as source model, and (3) QVT

transformation rules based on interaction patterns to map elements of the

SS input model to (more) elements of the SDRM output model, we could

automatically generate the service design refined model as target of the

transformation. We have also manually realised the second transformation

Figure 57 A-MUSE DSL

and ISDL solution

98 CHAPTER 5 TECHNIQUES COMPARISON AND SELECTION

step T2 in Figure 57 from A-MUSE DSL to ISDL. Chapter 6 elaborates on
this solution.

5.6.2 Synthesis from FLTL properties and A-MUSE DSL scenarios

Since the transformation from SS to SDRM with the Medini QVT engine
was proven to be successful [127], we re-used the same strategy to extend
the approach by Uchitel et al.. Figure 58 shows this solution and highlights
our contribution.

P
la
tf
o
rm

‐S
p
ec
if
ic
M
o
d
e
l (
P
SM

)
D
e
si
gn

P
la
tf
o
rm

‐I
n
d
ep

e
n
d
e
n
t
M
o
d
e
l (
P
IM

)
D
e
si
gn

Target platform selection

SSS

T1

T2

T3

SDRM

SDCM

PSM

A-MUSE DSL scenarios
&

FLTL properties

Uchitel et al.

Labelled Transition Systems (LTSs)
&

Modal Transition systems (MSCs)

BPEL

A-MUSE DSL

Our contribution

P
la
tf
o
rm

‐S
p
ec
if
ic
M
o
d
e
l (
P
SM

)
D
e
si
gn

P
la
tf
o
rm

‐I
n
d
ep

e
n
d
e
n
t
M
o
d
e
l (
P
IM

)
D
e
si
gn

Target platform selection

SSSSSS

T1T1

T2T2

T3T3

SDRMSDRM

SDCMSDCM

PSMPSM

A-MUSE DSL scenarios
&

FLTL properties

Uchitel et al.

Labelled Transition Systems (LTSs)
&

Modal Transition systems (MSCs)

BPEL

A-MUSE DSL

Our contribution

As depicted in Figure 58, the SS is represented using the A-MUSE DSL and
can be used to automatically generate an A-MUSE DSL model at the
SDRM level. This model represents our scenario and has been extended
with the specification of some safety properties in FLTL, which is able to
represent constraints that would not be possible to express with the A-
MUSE DSL notation [128]. By adapting the technique in [67], we have
synthesized an LTS from our A-MUSE DSL scenarios. Moreover, using the
algorithm in [64], we have also synthesized an LTS from FLTL safety
properties. Following the Uchitel et al. technique, we have further
synthesized these LTSs into corresponding MTSs and, finally, merged these
two MTSs in one MTS from properties and scenarios. All the mentioned
synthesis steps were performed manually. Chapter 7 elaborates on this
solution.

Figure 58 A-MUSE DSL
and TSs solution

 PROPOSED SOLUTIONS 99

5.6.3 From BPMN choreographies to BPMN orchestrations

In the literature one finds many attempts to develop transformations from

PIM business process models to some other formalisms, such as Petri nets

and process algebras, or to some PSM implementations, for example, in

terms of BPEL. Therefore, we decided to experiment with a process-based

approach as an alternative to the transition systems-based tecnique used in

Section 5.6.2. Figure 59 shows the proposed solution and highlights our

contribution.

P
la

tf
o

rm
-S

p
ec

if
ic

M
o

d
el

 (
P

SM
)

D
es

ig
n

P
la

tf
o

rm
-I

n
d

ep
e

n
d

e
n

t
M

o
d

el
 (

P
IM

)
D

es
ig

n

Target platform selection

SSSSSS

T1T1

T2T2

T3T3

SDRMSDRM

SDCMSDCM

PSMPSM

Dijkman et al.

(concrete) BPMN process
& collaboration models

Petri Nets

Ouyang et al.

BPEL process models Open Workflow Nets (oWFN)
OR

classical Petri Nets

Lohmann et al.

(abstract) BPMN
choreography models

(refined) BPMN
choreography models

Our contribution

As depicted in Figure 59, we have used BPMN to model the PIM design of

our methodology. We have created the SS in Figure 59 as a BPMN

choreography diagram that describes the abstract interactions between the

system and its users, the SDRM as a more detailed BPMN choreography

diagram that represents the interactions among the system components,

and the SDCM as a collaboration of process models (orchestration) that

conforms to the choreography previously defined in the SDRM. We have

used the Eclipse-based ATL engine to execute the two PIM model

transformation steps in Figure 59, namely T
1
 from SS to SDRM, and T

2

from SDRM to SDCM. These transformations are defined in ATL and,

analogously to the QVT transformations mentioned in Section 5.6.1, these

transformations are based on interaction patterns. In this way, we could

realise automatic behavioural refinements, enforcing reuse and using a

single language, namely BPMN, throughout the whole PIM design process.

Chapter 8 elaborates on this solution.

Figure 59 BPMN

solution

Chapter

6

6. Behaviour Refinement using

A-MUSE DSL and ISDL

This chapter has two purposes, namely (1) to introduce the Live Contacts

application, which is the context-aware mobile application that we have

used as running example to develop the three solutions outlined in Chapter

5, and (2) to present the first of these three solutions, i.e., a behaviour

refinement and synthesis technique that uses A-MUSE DSL and ISDL as

modelling languages at the PIM level of our methodology. In order to

achieve this, the chapter discusses the source and target models of our PIM

behaviour refinement and synthesis transformations, and presents these

transformations as well. The service specification (SS) and service design refined

model (SDRM) are the source and target models of our first transformation,

namely the SStoSDRM refinement transformation. The service design refined model

(SDRM) and the service design component model (SDCM) are the source and

target models of our second transformation, namely the SDRMtoSDCM

synthesis transformation. The SS and SDRM models are represented using A-

MUSE DSL, while the SDCM model is represented using ISDL. The

chapter focuses on the implantation of the SStoSDRM refinement

transformation.

This chapter is organised as follows: Section 6.1 introduces the

functions offered by the Live Contacts application running example,

together with the UML information and context models that represent the

(context) information handled by these functions, Sections 6.2 and 6.3

present the SS and SDRM models, respectively, using the Live Contacts

running example, Section 6.4 discusses the SS to SDRM transformation,

Section 6.5 discusses the SDCM model and, finally, Section 6.6 presents

our conclusions about the experience with A-MUSE DSL and ISDL

modelling languages.

102 CHAPTER 6 BEHAVIOUR REFINEMENT USING

A-MUSE DSL AND ISDL

6.1 Running Example: Live Contacts

The Live Contacts application [60] has been originally developed in the

Business4Users (B4U) project [129] and applied afterwards as an example

application in the A-MUSE project [61]. Live Contacts consists of an

application that offers context-aware mobile services to its users in order to

contact the right person, at the right time, via the right communication

channel. Live Contacts has been conceived according to empirical research

on the strategies that employees use to reach each other in their working

environment [130]. We have used the Live Contacts application as running

example to illustrate our methodology, but this application is not the goal

of this thesis. Live Contacts is a suitable example for our purpose for the

following reasons: (1) it is a means to experiment with traditional

request/response aspects of application behaviour, but also with event-

based aspects typical of context-aware mobile applications, (2) it is not too

simple to become a trivial example, and (3) it is not too complex to

become an unmanageable example. Table 5 summarises the service

functions offered by the Live Contacts application.

Function name Function purpose

Sign in Access to Live Contacts session

Buddy list Request of live contacts’ list of user

Buddy status Request of IM status of a specific live contact

Add buddy Addition of new live contact to user’s list

Remove buddy Removal of existing live contact from user’s list

Contact buddy Opening of communication channel bewteen user and live

contact

Reminder Reminder for scheduled user’s activity

Status change Notification of live contact’s IM status change

Proximity Notification of live contact’s proximity to user‘s location

Sign out Exit from Live Contacts session

In order to interact with his live contacts in the application, a user must

sign in and this creates a live contacts session. Afterwards, the user can

generate user input events, which require his explicit intervention, or get

notifications of context events, which are generated by the application

according to the user‟s context, preferences and needs. Examples of user

input events in Table 5 consist of buddy list, buddy status, add buddy, remove

buddy, and reminder functions. These functions allow a user to request the

Table 5 Live Contacts

functions

 RUNNING EXAMPLE: LIVE CONTACTS 103

list of his live contacts (buddies), get information about the IM (Instant

Messaging) status of these buddies, add new buddies to the live contacts‟

list, remove an existing buddy, and set a reminder for scheduled activities,

respectively. In Table 5, the status change and proximity event functions are

context events, which allow a user to get automatic notifications when a

buddy changes his IM status in the application, and a buddy whose IM

status is online comes nearby the user, respectively. The contact buddy

function in Table 5 connects the user via a defined communication means

with a specific live contact. This communication means can be a telephone

call, an SMS, an IM service or e-mail.

6.1.1 Information Model

Figure 60 shows the information model of the Live Contacts application.

This model is represented as an UML class diagram and describes the data

and status information handled by the Live Contacts application.

+setName(in name : String)

+setPassword(in password : String)

+getName() : String

+getPassword() : String

+name : String

+password : String

User

+getName() : String

+getEmailAddress() : String

+getHomePhoneNr() : String

+getMobilePhoneNr() : String

+getWorkPhoneNr() : String

+getGpsLocation() : GPSLocation

+getLocation() : ContactLocation

+getIMstatus() : IMstatus

+EmailAddress : String

+HomePhoneNr : String

+MobilePhoneNr : String

+WorkPhoneNr : String

+contactMeans : ContactMeans

+gpsLocation : GPSLocation

+location : ContactLocation

+IMstatus : IMstatus

Buddy

+getBuddyList() : BuddyList

+buddyList : BuddyList

FocusUser

+auth(in name : String, in password : String) : Boolean

+getUser(in name : String) : User

+user : User

UserList

+addUser(in user : User) : Boolean

+removeUser(in user : User) : Boolean

+loggedInUser : User

LoggedInList

+getBuddy(in name : String) : Buddy

+addBuddy(in buddy : Buddy) : Boolean

+removeBuddy(in buddy : Buddy) : Boolean

+buddy : Buddy

BuddyList

-isRegisteredIn

1

-hasUser

*

-isInBuddyListOf

1..*

-hasBuddy

*

-isBuddyListOf

1

-hasBuddyList 1

+setNote(in note : String)

+setTime(in selectedTime : String)

+getNote() : String

+getTime() : String

+note : String

+time : String

Notification

+Home

+Mobile

+Work

+Unknown

«enumeration»

ContactLocation

+Email

+HomePhone

+MobilePhone

+WorkPhone

+SMS

+Chat

«enumeration»

MeansKind

+Away

+BeRightBack

+Busy

+Online

+Offline

«enumeration»

IMstatus

+setPlace(in place : String)

+setX(in x : Integer)

+seY(in y : Integer)

+getPlace() : String

+getX() : Integer

+getY() : Integer

+place : String

+x : Integer

+y : Integer

GPSLocation

+meansKind : MeansKind

ContactMeans-hasContactMeans

*

-currentTime : String

Time

Figure 60 UML

information model of the

Live Contacts running

example

104 CHAPTER 6 BEHAVIOUR REFINEMENT USING

A-MUSE DSL AND ISDL

A User represents somebody registered in the Live Contacts application with

a name and password. The UserList class represents the set of users registered

in the application. The LoggedInList class, which is a subclass of UserList,

represents all the registered users that are currently logged in and,

therefore, can use the services offered by the application.

The FocusUser class depicted in Figure 60 represents the user from

whose perspective the application is considered. This FocusUser has a

BuddyList, which is a subclass of UserList and represents all the buddies of the

focus user. The Buddy class provides detailed information about buddies,

such as their EmailAddress, PhoneNr, ContactMeans, ContactLocation, GPSlocation

and IMstatus. The application uses this information to offer its services to

the focus user. The contact location is used to select an appropriate

communication channel to contact a buddy. For example, the SMS option

should be preferred if the contact‟s location is set on “mobile” and,

consequently, the considered buddy cannot be reached by chat or fixed

phone. The GPS location is used to provide context events, such as, for

example, the proximity event when a buddy is nearby the user. Both Buddy

and FocusUser are users registered in the application. However we have

defined FocusUser as subclass of Buddy, since the focus user is also a buddy

for other users. The information model of Figure 60 also shows the

Notification and Time classes, which allow the users to set reminders for a

specific time.

6.1.2 Context model

Figure 61 shows an excerpt of the context model of the Live Contacts

application. This model is represented as an UML class diagram, which

describes the relevant concepts handled by the components that manipulate

context.

Figure 61 shows the Entity and Context classes, which are foundation

concepts in our context models. An entity, for example Person, may be

related to several different context aspects, such as, for example, Location

and Temperature (see Section 2.3.2). In contrast, a specific context aspect

may relate to one or more entities. For example, the Location context aspect

relates to multiple entities, such as Person and Device. The SpatialEntity class

in Figure 61 represents tangible objects, such as a person or a device. In

contrast, an intangible entity represents intangible objects, such as, for

example, an application or a network. The IntrinsicContext class in Figure 61

represents a type of context aspects that belongs to the essential nature of a

single entity and does not depend on the relationship with other entities

[50]. Examples of this type of context aspects are the location of a person

or a device. The FocusUser and Buddy classes in Figure 61 represent user

 RUNNING EXAMPLE: LIVE CONTACTS 105

types or roles in the Live Contacts application and are related to each other

according to the information model in Figure 60.

Entity Context

SpatialEntity IntrinsicContext
ContextSituation

-isContextOf

1..*

-hasContext

1..*

-entities1..*
*

-contexts1..*

*

Person

Buddy

FocusUser

Device
-isDeviceOf1

-hasDevice1..*

Location

GPSLocation

-hasLocation

1

GPSDevice

Proximity

1

-user1

*

1

-user2 *

*

-loc1

*

*

-loc2*

User

Proximity
user1 = FocusUser;
user2 = Buddy;
loc1 = user1.hasDevice(GPSDevice).hasLocation(GPSLocation);
loc2 = user2.hasDevice(GPSDevice).hasLocation(GPSLocation);
distance (loc1, loc2) =
{6378*acos(sin(loc1.x)*sin(loc2.x)+cos(loc1.x)*cos(loc2.x)*cos(loc1.y-loc2.y))};
proximity (user1, user2, threshold) = EVAL {distance (loc1, loc2) < threshold};

Figure 61 also depicts the ContextSituation class, which is an element

composed by contexts and entities. Context situations enable the

representation of particular state-of-affairs of the applications‟ universe of

discourse [50]. An example of context situations is Proximity in Figure 61,

which describes when a focus user is nearby one of his buddies. The

concepts used in the proximity situation can be navigated using the

enclosed textual description in Figure 61. Particularly, the proximity

situation involves two entities of type Person, namely user1 and user2, and

two context aspects of type Location, namely loc1 and loc2. The entity user1

corresponds to the focus user (user1 = FocusUser), while the entity user2

corresponds toone of the buddies of this focus user (user2 = Buddy). By

navigating Figure 61 from the Proximity class to the left, we can follow the

condition loc1 = user1.hasDevice(GPSDevice).hasLocation(GPSLocation), i.e., the

user1 is a Person, who has one (or more) Device of type GPSDevice, which has

only one Location of type GPSLocation. This GPS Location class is further

represented in the information model of Figure 60. Loc1 is an intrinsic

context type in Figure 61 and an element of the Proximity situation. This

situation compares the location of two persons based on the distance

between their locations, and evaluates to true when this distance is within a

certain threshold, i.e., proximity (user1, user2, threshold) = EVAL {distance (loc1,

loc2) < threshold}. The distance (loc1, loc2) method in Figure 61 uses the x and y

Figure 61 Context

model for the proximity

event

106 CHAPTER 6 BEHAVIOUR REFINEMENT USING

A-MUSE DSL AND ISDL

attributes of the GPSLocation class defined in the information model of

Figure 60.

6.1.3 Behaviour models

The information and context model described in Sections 6.1.1 and 6.1.2,

respectively, apply at different abstraction levels of our methodology, i.e.,

the same information (context) model can be used at the SS, SDRM and

SDCM levels. In contrast, the models that describe the behaviour of the

application apply at a specific abstraction level of our methodology.

Therefore, different behaviour models are necessary at the SS, SDRM and

SDCM levels. These behaviour models gradually add details starting from an

abstract SS, going through a partially refined SDRM model, and ending in a

possibly executable SDCM model. The next Sections describe these

behaviour models using the A-MUSE DSL for the SS and SDRM models

and ISDL for the SDCM model. These models are illustrated using the Live

Contacts running example and manipulate the information and context

information represented in Figure 60 and Figure 61, respectively.

6.2 Service Specification

The service specification (SS) is the most abstract model of our

methodology and represents the application to be developed as a single

entity with its behaviour being defined from an integrated perspective (see

Section 2.2.2). According to this integrated perspective, only the

interactions between the system, considered as a black box, and its user,

which forms the external environment to the system, are relevant at the SS

level.

6.2.1 High-level structure

Figure 62 shows the high-level structure of the service specification of the

Live Contacts running example expressed in the A-MUSE Domain Specific

Language (DSL) [126]. The A-MUSE DSL is a profile of ISDL that has

been developed and applied in the A-MUSE project [61]. An Ecore version

of the A-MUSE metamodel is available, together with an Eclipse-based

editor to create A-MUSE DSL models that conform to this metamodel.

 SERVICE SPECIFICATION 107

Figure 62 represents an instance of the behaviour element of the A-MUSE

DSL metamodel named Service Specification, which starts with an entry point

element named e. Figure 62 also shows three item elements named me, users

and loggedIn, which are of the types FocusUser, UserList and LoggedInList of

the information model in Figure 60. Items are global variables that can be

referred to within the behaviour that defines these variables. Therefore, the

items me, users and loggedIn can be referred to within the Service Specification

behaviour. Figure 63 also shows that in order to access the functions offered

by the Live Contacts application, a user must first request the Sign In

function. Afterwards, the user can decide to start a Session or eventually to

Sign Out and exit the application. The Sign In and Session are behaviour

instance elements, which are instances of Sign In and Session behaviour

elements described elsewhere in the model. The Session behaviour element

is shown in Figure 63.

Figure 62 Service

Specification (SS) in A-

MUSE DSL

108 CHAPTER 6 BEHAVIOUR REFINEMENT USING

A-MUSE DSL AND ISDL

The Session behaviour in Figure 63 allows alternative options, which

correspond to the functions offered by the Live Contacts application shown

in Table 5. When one of these functions ends, a new instance of the Service

Specification behaviour is started and a new option can be chosen. Each

function is represented in Figure 63 as a behaviour instance element, which

belongs to a behaviour element represented in another module of the

specification. In the remainder of this thesis, we use the Remove Buddy and

Proximity functions instead of the whole behaviour, since these functions are

representative of traditional request/response interactions between the user

and the system (Remove Buddy function), and event-based interactions that

do not require explicit user intervention (Proximity function).

Figure 63 SS, Session

 SERVICE SPECIFICATION 109

6.2.2 Service functions

Figure 64 and Figure 65 zoom into the details of the Remove Buddy and

Proximity behaviour instance elements (functions), respectively.

The Remove Buddy function (behaviour element) in Figure 64 consists of a

user input element named removeReq followed either by a user output element

named removeAcc or a user output element named removeRej. We use the user

input and output elements as interaction markers (see Section 3.2), namely as

placeholders for abstract interactions at the SS level that correspond to

(more concrete) refined interactions among specific components at the

SDRM level.

Figure 64 shows that a user may request to remove a buddy from his

buddy list (removeReq marker) by giving as input to the application the

name of this buddy (String name). If the buddy is not in the list

(!IsInList(removeReq.name, BuddyList): Boolean condition), the user request is

rejected (removeRej marker), otherwise (IsInList(removeReq.name, BuddyList):

Boolean condition) the request is accepted (removeAcc marker) and the

buddy is removed from the buddy list of the user (represented by the

me.getBuddyList().removeBuddy(me.getBuddyList().getBuddy(removeReq.name)) me-

Figure 64 SS, Remove

Buddy

110 CHAPTER 6 BEHAVIOUR REFINEMENT USING

A-MUSE DSL AND ISDL

thod). The status information handled by the Remove Buddy function is

defined in the UML information model in Figure 60. Although this

information is represented in Figure 64 using textual annotations attached

to model elements, this is done only for representation purposes, since the

Eclipse-based A-MUSE DSL editor [126] allows one to specify this

information in a property view separately from the graphical representation

of model elements.

The Proximity function (behaviour element) consists of an event element

named proximityEvent followed either by a user output element named

proximityAlert or a new instance of the Proximity behaviour. We use these event

and user output elements as interaction markers for the Proximity function.

Figure 65 shows that a user can be notified about the occurrence of the

proximity situation represented in our context model (see Section 6.1.2).

The occurrence of a proximity situation is represented in Figure 65 with the

proximityEvent marker when a buddy (Buddy b), whose IM status is “online”

(IsOnline(proximityEvent.b): Boolean condition) is nearby the user. As a

consequence, the application warns the user with an alert (proximityAlert

marker). The specific text shown to the user, namely the message msg =

proximityEvent.b.getName() + “is nearby”, it is not relevant at this level of

abstraction, but is represented for consistency with the service design

refined level.

Figure 65 SS, Proximity

 SERVICE DESIGN REFINED MODEL 111

6.3 Service Design Refined Model

The service design refined model (SDRM) represents the application to be

developed as a structured behaviour from a distributed perspective (see

Section 2.2.2). According to this distributed perspective, the system is

considered as a set of interacting components with interfaces that offer

services to each other, independently on the specific internal behaviour of

each component. These components are specific to the particular

application to be developed, i.e., to the specific reference architecture that is

used to design the system. In this thesis, we used the reference architecture

for context-aware mobile applications presented in Section 3.4 and recalled

in Figure 120.

user

buddy

Presentation
Component

Presentation
Component

USER CONTEXT

BUDDY CONTEXT

User
Agent

Service
Trader

User
Agent

Action Providers

Email Service

Phone Service

Chat Service

SMS Service

context
changes

context
changes

user
input
events

context
events

discover

(Outlook) Calendar Service

(IM) Presence Service

(GPS) Location Service

Context Sources

register

register

Coordinator

DataBase

search & update

execute actions

execute actions

trigger
actions

user

buddy

Presentation
Component

Presentation
Component

Presentation
Component

Presentation
Component

USER CONTEXT

BUDDY CONTEXT

User
Agent
User
Agent

Service
Trader

User
Agent
User
Agent

Action Providers

Email Service

Phone Service

Chat Service

SMS Service

Action Providers

Email Service

Phone Service

Chat Service

SMS Service

context
changes

context
changes

user
input
events

context
events

discover

(Outlook) Calendar Service

(IM) Presence Service

(GPS) Location Service

Context Sources

(Outlook) Calendar Service

(IM) Presence Service

(GPS) Location Service

Context Sources

register

register

Coordinator

DataBase

search & update

execute actions

execute actions

trigger
actions

6.3.1 Remove Buddy refinement

Figure 67 shows the Remove Buddy behaviour that refines the service

specification in Figure 64 in terms of interactions between components of

our reference architecture. This behaviour involves the user agent (UA),

coordinator (C) and database (DB) components. Each interaction in Figure

67 is marked with a label and represents an interaction between two

components of our reference architecture and the direction of this

interaction. In order to avoid clogging the figure, we have not included the

status information handled by components. This information is the same as

depicted in Figure 64, but assigned to the proper corresponding refined

interactions.

Figure 66 Reference

architecture for context-

aware mobile

applications

112 CHAPTER 6 BEHAVIOUR REFINEMENT USING

A-MUSE DSL AND ISDL

The removeReq interaction in Figure 67 consists of a request from the user

agent to the coordinator (UA to C label) to remove a buddy from the user‟s

list. The coordinator interacts with the database through the findRemReq and

findRemRsp interactions (C to DB and DB to C labels, respectively) to

determine whether the buddy is included in the buddy list of the user. If

this is the case, the coordinator removes the buddy from the list with the

removeBuddy interaction (C to DB label) and sends a positive response to the

user agent through the removeAcc interaction (C to UA label). If the buddy is

not in the list, the coordinator sends a negative response to the user agent

through the removeRej interaction (C to UA label).

In Figure 67, we identified the following five basic interaction patterns (see

Section 3.2), which are recurrent interactions between two components:

(1) the request pattern consists of a one-way interaction between the user

agent and the coordinator (removeReq in Figure 67), (2) the search pattern

Figure 67 SDRM,

Remove Buddy

 SERVICE DESIGN REFINED MODEL 113

consists of a two-way interaction between the coordinator and the database

(findRemReq and findRemRsp in Figure 67), (3) the update pattern consists of a

one-way interaction between the coordinator and the database

(removeBuddy in Figure 67), (4) the acceptance pattern consists of a one-way

interaction between the coordinator and the user agent (removeAcc in Figure

67), and (5) the rejection pattern consists of a one-way interaction between

the coordinator and the user agent (removeRej in Figure 67).

6.3.2 Proximity refinement

Figure 68 shows the Proximity behaviour that refines the service specification

in Figure 65 in terms of interactions between components of our reference

architecture. This behaviour involves the coordinator (C), context sources

(CS), database (DB) and user agent (UA) components. Context sources (CS)

are the components dedicated to sense changes in the user‟s context and

provide the coordinator (C) with context events.

Although there are several context sources distributed in the environment,

we assume in Figure 68 that only one context source at a time

communicates with the coordinator, namely the context source that has

sensed the event of interest. In case of the proximity event, we assume that

this context source consists of a context manager component (see Section

2.3.1) that:

Figure 68 SDRM,

Proximity

114 CHAPTER 6 BEHAVIOUR REFINEMENT USING

A-MUSE DSL AND ISDL

– has access to raw context information, namely the user and buddies

location coordinates captured by single domain sensors, such as, for

example, the GPS devices integrated in the user and buddies mobile

phones,

– combines this raw information coming from multiple sources in

aggregated information, namely the proximity situation discussed in

Section 6.1.2, and

– generates a proximity event upon the occurrence of the proximity

situation between the user and one of his/her buddies.

In order to receive context events, it is first necessary to subscribe to those

events. Figure 68 shows the subscribeProximity interaction between the

coordinator and a context source (C to CS label). After the subscription, a

proximityChange is generated eventually by this context source to notify the

coordinator upon the occurrence of a proximityChange (CS to C label). Figure

68 further shows that the proximityChange is followed by a parallel decision

with two branches, which merge after the following has taken place: (1)

retrieving from the database the name of the buddy of interest with the

findBuddyReq and findBuddyRsp interactions (C to DB and DB to C labels,

respectively), and (2) querying an appropriate context source in order to

synchronously retrieve the IM status of this buddy with the IMstatusReq and

IMstatusRsp interactions (C to CS and CS to C labels, respectively). In case the

retrieved IM status is “online” the proximityAlert interaction occurs, in which

the coordinator generates a message to notify the occurrence of a proximity

event to the user agent. If the buddy is not “online”, no user alert is

generated. After the subscribeProximity interaction, proximityChange events can

be generated by the context source as long as the unsubscribeProximity

interaction depicted in Figure 68 does not occur.

The context subscription mechanism represented in Figure 68 is

controlled by a variable with name Subscribed. The subscribeProximity

interaction can occur when the mentioned variable is set on “!Subscribed”.

Once the subscription is done, the control variable must be set on

“Subscribed”, in which case two events can occur: (1) the proximityUnsubscribe

interaction in case the Coordinator is not anymore interested in proximity

notifications from the Context Source, after which the control variable must

be set on “!Subscribed”, or (2) a proximityChange interaction generated

eventually by the Context Source to notify the Coordinator upon the occurrence

of a proximity event, after which the control variable keeps the value

“Subscribed”. The actual implementation of the context subscription and

notification mechanisms falls outside the scope of this thesis. However, in

our previous work we have tackled how a context expression evaluator

component dedicated to context information sensing and processing can be

used in our reference architecture for these purposes [131].

 SS TO SDRM TRANSFORMATION 115

The refinement shown in Figure 68 is one of the possible solutions that

can be used to define the Proximity function, possibly the most

straightforward solution. However, other solutions can be used. In our

research approach (see Section 3.2), we have designed this refinement

manually and, afterwards, used the knowledge generated in the design to

automate this refinement. In the phase of manual refinement, we identified

the following six basic interaction patterns in Figure 68: (1) a one-way

subscribe pattern between coordinator and context source (subscribeProximity

in Figure 68), (2) a one-way unsubscribe pattern between coordinator and

context source (unsubscribeProximity in Figure 68), (3) a one-way signal event

pattern between context source and coordinator (proximityChange in Figure

68), (4) a two-way search pattern between coordinator and database

(findBuddyReq and findBuddyRsp in Figure 68), (5) a two-way context query

pattern between coordinator and context source (IMstatusReq and

IMstatusRsp in Figure 68), and (6) a one-way event alert pattern between

coordinator and user agent (proximityAlert in Figure 68).

6.4 SS to SDRM Refinement Transformation

In order to automatically generate the SDRM target model of Figure 67

from the SS source model of Figure 62, we have created a transformation

called SStoSDRM refinement that is based on interaction markers and patterns

as units of reuse. This transformation consists of transformation rules in the

QVT Relations language supported by the Medini QVT tool [39]. Inputs to

the Medini QVT transformation are:

– a source and a target metamodel defined in Ecore, which is the

metamodel type used by the Eclipse Modeling Framework (EMF) [26].

Our source and target metamodels are both represented by the A-

MUSE DSL metamodel,

– a source model conforming to the source metamodel, which is the SS

expressed in A-MUSE DSL.

The Medini QVT transformation produces as output a target model that

conforms to the given target metamodel, namely an SDRM model

expressed in A-MUSE DSL. The next Sections show schematically the QVT

transformation rules that realise the SS to SDRM refinement of the Remove

Buddy and Proximity functions.

6.4.1 Remove Buddy refinement transformation

Figure 69 shows the source and target models for the transformation of the

Remove Buddy service specification discussed in Section 6.2 into the Remove

Buddy service design refined model discussed in Section 6.3.

116 CHAPTER 6 BEHAVIOUR REFINEMENT USING

A-MUSE DSL AND ISDL

Source model

Target model

M
o
d
e
l

tr
a
n
s
fo

rm
a
ti
o
n

Figure 69 shows at a glance that the Remove Buddy refinement

transformation adds detail to the target model and, at the same time,

preserves the behaviour structure of the source model. We have defined

transformation rules in order to map interaction markers in the SS source

model onto interaction patterns in the SDRM target model. We have also

defined transformation rules in order to map the SS behaviour structure,

such as, for example, entry point, enabling relation, or-split, or-join and entry

point elements in Figure 69, onto corresponding behaviour structure

elements in the SDRM target model. For sake of readability, we could not

present the complete set of transformation rules. Figure 70 shows the

mappings that we have used to define the transformation rules from

interaction markers to interaction patterns, which we consider the most

significant transformation rules for the purpose of this thesis.

Figure 69 Remove

Buddy: source and

target models for the

SStoSDRM

transformation

 SS TO SDRM TRANSFORMATION 117

Transformation
Rule 1

Request +Search
marker

Request + Search
interaction patterns

Update + Acceptance
marker

Rejection
marker

Transformation
Rule 2

Transformation
Rule 3

Update + Acceptance
interaction patterns

Rejection
interaction pattern

Transformation
Rule 1

Request +Search
marker

Request + Search
interaction patterns

Update + Acceptance
marker

Update + Acceptance
marker

Rejection
marker

Transformation
Rule 2

Transformation
Rule 2

Transformation
Rule 3

Transformation
Rule 3

Update + Acceptance
interaction patterns

Update + Acceptance
interaction patterns

Update + Acceptance
interaction patterns

Rejection
interaction pattern

Rejection
interaction pattern

Rejection
interaction pattern

The mappings in Figure 70 relate SS markers to SDCM interaction patterns

according to the following transformation rules:

1. Transformation rule 1 creates a mapping of an SS marker with name

removeReq onto the combination of a request interaction pattern with

name removeReq and a search interaction pattern with name findRemReq

and findRemRsp. In order to achieve this, for each user input element with

name removeReq that is found in the SS source model, transformation

rule 1 generates in the SDRM target model the following elements: (1) a

refined data action element of type UA to C and name removeReq, (2) a

refined data action element of type C to DB and name findRemReq, (3) a

refined data action element of type DB to C and name findRemRsp, (4) an

enabling relation element between the refined data actions removeReq of

type UA to C and findRemReq of type C to DB, and (5) an enabling relation

element between the refined data actions findRemReq of type C to DB and

findRemRsp of type DB to C.

2. Transformation rule 2 creates a mapping of an SS marker with name

removeAcc onto the combination of an update interaction pattern with

Figure 70 Remove

Buddy: mappings for

SStoSDRM

transformation rules

definition

118 CHAPTER 6 BEHAVIOUR REFINEMENT USING

A-MUSE DSL AND ISDL

name removeBuddy and an acceptance interaction pattern with name

removeAcc. In order to achieve this, for each user output element with

name removeAcc that is found in the SS source model, transformation

rule 2 generates in the SDRM target model the following elements: (1) a

refined data action element of type C to DB and name removeBuddy, (2) a

refined data action element of type C to UA and name removeAcc, and (3) an

enabling relation element between the refined data actions removeBuddy of

type C to DB and removeAcc of type C to UA.

3. Transformation rule 3 creates a mapping of an SS marker with name

removeRej onto a rejection interaction pattern with name removeRej. In

order to achieve this, for each user output element with name removeRej

that is found in the SS source model, transformation rule 3 generates a

refined data action element of type C to UA and name removeRej in the

SDRM target model.

The transformation rules mentioned above are specific to the Remove Buddy

function of the Live Contacts application. In order to make these

transformation rules available for reuse both in other functions of the Live

Contacts application and in different applications than Live Contacts, we

have generalised these rules as shown in Table 6. In these generalised rules,

the function name used as tag for a specific rule is replaced by a more

general tag. Therefore, the “remove” tag used to characterize the elements

of the Remove Buddy function is replaced by an <x> tag. For example, the

removeReq name is replaced by an <x>Req name in Table 6.

 SS TO SDRM TRANSFORMATION 119

Transformation rule Source element Target element(s)

Transformation rule 1 User Input

– Name: <x>Req

Refined Data Action

– Name: <x>Req

– Type: UA to C

Refined Data Action

– Name: find<x>Req

– Type: C to DB

Refined Data Action

– Name: find<x>Rsp

– Type: DB to C

Enabling Relation

– Enabling source: Refined Data Action

– Name: <x>Req

– Type: UA to C

– Enabling target: Refined Data Action

– Name: find<x>Req

– Type: C to DB

Enabling Relation

– Enabling source: Refined Data Action

– Name: find<x>Req

– Type: C to DB

– Enabling target: Refined Data Action

– Name: find<x>Rsp

– Type: DB to C

Transformation rule 2 User Output

– Name: <x>Acc

Refined Data Action

– Name: <x>Buddy

– Type: C to DB

Refined Data Action

– Name: <x>Acc

– Type: C to UA

Enabling Relation

– Enabling source: Refined Data Action

– Name: <x>Buddy

– Type: C to DB

– Enabling target: Refined Data Action

– Name: <x>Acc

– Type: C to UA

Transformation rule 3 User Output

– Name: <x>Acc

Refined Data Action

– Name: <x>Rej

– Type: C to UA

6.4.2 Proximity refinement transformation

Figure 71 shows the source and target models for the transformation of the

Proximity service specification discussed in Section 6.2 into the Proximity

service design refined model discussed in Section 6.3.

Table 6 Remove Buddy:

transformation rules

generalization

120 CHAPTER 6 BEHAVIOUR REFINEMENT USING

A-MUSE DSL AND ISDL

Source model

Model transformation

Target model

Source model

Model transformation

Target model

Figure 71 shows at a glance that the Proximity refinement transformation adds

detail to the target model and, at the same time, preserves the behaviour

structure of the source model. Analogously to the Remove Buddy refinement,

also for the Proximity refinement we have defined transformation rules in

order to map interaction markers in the SS source model onto interaction

patterns in the SDRM target model. We have also defined transformation

rules in order to map the SS behaviour structure, such as, for example,

enabling relation, or-split, or-join, and-split, and-join elements in Figure 71, onto

corresponding behaviour structure elements in the SDRM target model.

For sake of readability, we could not present the complete set of

transformation rules and Figure 72 shows the mappings that we have used to

define the transformation rules from interaction markers to interaction

Figure 71 Proximity:

source and target

models for the

SStoSDRM

transformation

 SS TO SDRM TRANSFORMATION 121

patterns, which we consider the most significant transformation rules for

the purpose of this thesis.

Transformation
Rule 1

Subscribe OR (Unsubscribe OR Signal Event)
interaction patterns

Alert
marker

(Search AND Discover) + Event Alert
interaction patterns

Transformation
Rule 2

Event
marker

Transformation
Rule 1

Subscribe OR (Unsubscribe OR Signal Event)
interaction patterns

Alert
marker

(Search AND Discover) + Event Alert
interaction patterns

Transformation
Rule 2

Transformation
Rule 2

Event
marker
Event
marker

The mappings in Figure 72 relate SS markers to SDCM interaction patterns

according to the following transformation rules:

1. Transformation rule 1 creates a mapping of an SS marker with name

proximityEvent onto the combination of a subscribe interaction pattern with

name subscribeProximity, an unsubscribe interaction pattern with name

unsubscribeProximity, and a signal event interaction pattern with name

proximityChange. In order to achieve this, for each event element with

name proximityEvent that is found in the SS source model, transformation

rule 1 generates in the SDRM target model the following elements: (1) a

refined data action element of type C to CS and name subscribeProximity, (2)

a refined data action element of type C to CS and name unsubscribeProximity,

(3) a refined data action element of type CS to C and name proximityChange,

(4) an enabling relation element between an or-split element and the

refined data action subscribeProximity of type C to CS, (5) an enabling

relation element between two or-split elements, (6) an enabling relation

Figure 72 Proximity:

mappings for

SStoSDRM

transformation rules

definition

122 CHAPTER 6 BEHAVIOUR REFINEMENT USING

A-MUSE DSL AND ISDL

element between an or-split element and the refined data action

unsubscribeProximity of type C to CS, and (7) an enabling relation element

between an or-split element and the refined data action proximityChange of

type CS to C.

2. Transformation rule 2 creates a mapping of an SS marker with name

proximityAlert onto the combination of a search interaction pattern with

name findBuddyReq and findBuddyRsp, a context query interaction pattern

with name IMstatusReq and IMstatusRsp, and an event alert interaction

pattern with name proximityAlert. In order to achieve this, for each user

output element with name proximityAlert that is found in the SS source

model, transformation rule 2 generates in the SDRM target model the

following elements: (1) a refined data action element of type C to DB and

name findBuddyReq, (2) a refined data action element of type DB to C and

name findBuddRsp, (3) a refined data action element of type C to CS and

name IMstatusReq, (4) a refined data action element of type CS to C and

name IMstatusRsp, (5) a refined data action element of type C to UA and

name proximityAlert, (6) an enabling relation element between an and-split

element and the refined data action findBuddyReq of type C to DB, (7) an

enabling relation element between the refined data actions findBuddyReq of

type C to DB and findBuddRsp of type DB to C, (8) an enabling relation

element between the refined data action findBuddRsp of type DB to C and

an and-join element, (9) an enabling relation element between an and-split

element and the refined data action IMstatusReq of type C to CS, (10) an

enabling relation element between the refined data actions IMstatusReq of

type C to CS and IMstatusRsp of type CS to C, (11) an enabling relation

element between the refined data action IMstatusRsp of type CS to C and

an and-join element, and (12) an enabling relation element between an

and-join element and the refined data action proximityAlert, of type C to UA.

The transformation rules mentioned above are specific to the Proximity

function of the Live Contacts application. In order to make these

transformation rules available for reuse both in similar functions of the Live

Contacts application and in different applications than Live Contacts, we

have generalised these rules as shown in Table 7 and Table 8. In these

generalised rules, the function name used as tag for a specific rule is

replaced by a more general tag. Therefore, the “proximity” tag used to

characterize the elements of the Proximity function is replaced by an <x> tag.

For example, in Table 7, the proximityEvent name is replaced by an <x>Event

name. Table 7 shows the generalization of transformation rule 1 described

above.

 SS TO SDRM TRANSFORMATION 123

Transformation

rule

Source element Target elements

Transformation rule

1

Event

– Name: <x>Event

Refined Data Action

– Name: subscribe<x>

– Type: C to CS

Refined Data Action

– Name: unsubscribe<x>

– Type: C to CS

Refined Data Action

– Name: <x>Change

– Type: CS to C

Enabling Relation

– Enabling source: OrSplit

– Enabling target: Refined Data Action

– Name: subscribe<x>

– Type: C to CS

Enabling Relation

– Enabling source: OrSplit

– Enabling target: OrSplit

Enabling Relation

– Enabling source: OrSplit

– Enabling target: Refined Data Action

– Name: unsubscribe<x>

– Type: C to CS

Enabling Relation

– Enabling source: OrSplit

– Enabling target: Refined Data Action

– Name: <x>Change

– Type: CS to C

Table 8 shows the generalization of transformation rule 2 described above.

The “proximity” tag used to characterize the elements of the Proximity

function is replaced by an <x> tag. In contrast, the “Buddy” and “IMstatus”

tags used to characterize (context) information values handled by the

Proximity function are replaced by an <y> tag.

Table 7 Proximity:

transformation rule 1

generalization

124 CHAPTER 6 BEHAVIOUR REFINEMENT USING

A-MUSE DSL AND ISDL

Transformation

rule

Source element Target elements

Transformation rule

2

User Output

– Name: proximityAlert

Refined Data Action

– Name: find<y>Req

– Type: C to DB

Refined Data Action

– Name: find<y>Rsp

– Type: DB to C

Refined Data Action

– Name: <y>Req

– Type: C to CS

Refined Data Action

– Name: <y>Rsp

– Type: CS to C

Refined Data Action

– Name: <x>Alert

– Type: C to UA

Enabling Relation

– Enabling source: AndSplit

– Enabling target: Refined Data Action

– Name: find<y>Req

– Type: C to DB

Enabling Relation

– Enabling source: Refined Data Action

– Name: find<y>Req

– Type: C to DB

– Enabling target: Refined Data Action

– Name: find<y>Rsp

– Type: DB to C

Enabling Relation

– Enabling source: Refined Data Action

– Name: find<y>Rsp

– Type: DB to C

– Enabling target: AndJoin

Enabling Relation

– Enabling source: AndSplit

– Enabling target: Refined Data Action

– Name: <y>Req

– Type: C to CS

Enabling Relation

– Enabling source: Refined Data Action

– Name: <y>Req

– Type: C to CS

– Enabling target: Refined Data Action

– Name: <y>Rsp

– Type: CS to C

Table 8 Proximity:

transformation rule 2

generalization

 SERVICE DESIGN COMPONENT MODEL 125

Enabling Relation

– Enabling source: Refined Data Action

– Name: <y>Rsp

– Type: CS to C

– Enabling target: AndJoin

Enabling Relation

– Enabling source: AndJoin

– Enabling target: Refined Data Action

– Name: <x>Alert

– Type: C to UA

6.5 Service Design Component Model

According to our methodology, the Remove Buddy and Proximity service

design refined models in Figure 67 and Figure 68, respectively, and all the

refinements of the other service functions should be further synthesized in a

service design component model (SDCM) that consists of executable

patterns. Therefore, we have realised an SDRMtoSDCM transformation that

maps an SDRM model in A-MUSE DSL onto an SDCM model in ISDL.

The SDRM model represents the interactions among components of our

refrence architecture, while the SDCM model also represents the internal

behaviour of these components as an orchestration from the perspective of

the coordinator, which orchestrates all the other components of our

reference architecture.

The SDRM to SDCM tranformation has been manually realised by

assigning SDRM interaction patterns to SDCM executable patterns. Figure

73 depicts this assignment for the Remove Buddy service design model in

Figure 67, which represents a composite interaction pattern that consists of

five basic interaction patterns (see Section 6.4.1). The Remove Buddy

composite interaction pattern is an instance of the more general user request

with acceptance or rejection composite pattern, which allows a user to make a

request to the system followed by confirmation whether the required task

has been successfully performed or not.

126 CHAPTER 6 BEHAVIOUR REFINEMENT USING

A-MUSE DSL AND ISDL

Figure 73 depicts the behaviour of the user agent, the coordinator and the

database considering their interactions. Dashed lines in Figure 73 indicate

the assignment of basic patterns to these components.

6.6 Discussion

When realising the SStoSDRM refinement transformation (see Section 6.4),

we defined transformation rules to automate the mappings of SS interaction

markers onto SDRM interaction patterns. During this work, we realised

that composite patterns, such as, for example, the Remove Buddy in Figure

67, are not very flexible to be mapped, since they represent complex

behaviours with a fixed structure. Therefore, our transformation rules

became large and complex. However, since the library of composite services

and patterns we have defined is rather small, the benefit of mapping

composite patterns is that the number of transformation rules we needed to

create was also small. In contrast, the library of basic patterns that can be

used to configure composite patterns is large and it would require a large

number of transformation rules. However, basic patterns give more

flexibility in the design, since they are small, simple, and can be dynamically

combined in different configurations of complex behaviours. Therefore, we

learned that when considering the granularity of interaction patterns, the

Figure 73 Mappings of

SDRM interaction

patterns onto SDCM

executable patterns

 DISCUSSION 127

trade-off between the number, size, and complexity of transformation rules

on one hand, and the flexibility of design choices on the other hand has to

be considered.

When realising the SDRMtoSDCM synthesis transformation (see Section

6.5), we learned that the assignment of interaction patterns to executable

patterns was quite straightforward. However, we noticed that some

synchronization and concurrency issues of interacting components should

be considered. For example, the coordinator component has to schedule

somehow the execution of composite patterns represented as behaviour

instances in Figure 63. The designer may decide to interleave these

composite patterns, by executing all the patterns one at a time in a single

thread of control. Alternatively, the designer may decide to execute these

patterns in parallel threads of control. Independently of the option chosen,

some formalism should be used to represent and analyse these choices.

Moreover, our A-MUSE and ISDL models represent only one user instance

interacting with the system. In reality, the coordinator has to handle

multiple user instances running at the same time. These aspects motivated

us to investigate on transition systems, which are known to be suitable to

handle synchronization issues. Our solution for behaviour synthesis based

on transition systems is discussed in Chapter 7.

Chapter

7

7. Behaviour Synthesis

using Transition Systems

This chapter presents a behaviour synthesis technique that uses Labelled

and Modal Transition Systems (LTSs and MTSs) to model the PIM level of

our methodology. This technique synthesises an executable behaviour of the

application under development from the perspective of a specific

component, namely the coordinator component in the case of our

reference architecture. This synthesized behaviour corresponds to the service

design component model (SDCM) of our methodology, while the behaviour

used as starting point for the synthesis corresponds to our service design

refined model (SDRM), as discussed in Section 4.1. Therefore, the proposed

technique focuses on the SDRMtoSDCM synthesis transformation of our

methodology, which copes with behaviour models that reveal the

application internal architecture. This chapter presents the source and

target models of the SDRMtoSDCM transformation using the Live Contacts

running example, and discusses the synthesis steps for realising this

transformation. The source model is represented using a combination of A-

MUSE DSL scenarios and Fluent Linear Temporal Logic (FLTL) safety

properties. Both models are first synthesized in two LTSs, one from

scenarios and one from properties, respectively. These LTSs are further

synthesized in MTSs, which are finally merged into one MTS from

properties and scenarios that represents the target model of our

SDRMtoSDCM synthesis transformation.

This chapter is organised as follows: Section 7.1 gives an overview of our

synthesis approach, Section 7.2 discusses the details of the synthesis from

A-MUSE DSL scenarios, Section 7.3 presents the synthesis from FLTL

safety properties, Section 7.4 merges the results obtained in the synthesis

from scenarios and properties, and, finally, Section 7.5 discusses our

experience with this technique.

130 CHAPTER 7 BEHAVIOUR SYNTHESIS

USING TRANSITION SYSTEMS

7.1 Synthesis Approach

The technique proposed by Uchitel et al. [64, 67] consists of the

combination of behaviour synthesis from scenarios, which allow to represent

a limited set of required behaviours that the modelled application can

assume, and behaviour synthesis from properties, which allow to represent a

large set of possible acceptable behaviours that the modelled application can

assume. Modal Transitions Systems (MTSs) can be used to capture the

middle ground between scenarios and properties, since MTSs allow the

distinction between required and possible behaviours (see Section 4.1). The

technique in [64, 67] allows to synthesize two MTSs, one from scenarios

and one from properties, and merge them in a resulting MTS that is

demonstrated to preserve the original properties and scenarios. Figure 74

shows the approach for behaviour synthesis from properties and scenarios

that we have used in this thesis according to [64].

b) synthesis from properties

FLTL
safety properties

step 1.b

LTS from properties

MTS from properties

a) synthesis from scenarios

A-MUSE DSL
scenarios

LTS from scenarios

MTS from scenarios

MTS from properties and scenarios

step 3

LTS from properties and scenarios

step 1.a

step 2.bstep 2.a

step 4

b) synthesis from properties

FLTL
safety properties

step 1.bstep 1.b

LTS from properties

MTS from properties

a) synthesis from scenarios

A-MUSE DSL
scenarios

LTS from scenarios

MTS from scenarios

MTS from properties and scenarios

step 3step 3

LTS from properties and scenarios

step 1.astep 1.a

step 2.bstep 2.bstep 2.astep 2.a

step 4step 4

Although Message Sequence Charts (MSCs) are used in [64] to represent

scenarios, none specific technique or language for scenarios representation

is prescribed. Therefore, we used the A-MUSE DSL to represent our

scenarios, since it allowed us to represent (1) sequences of interaction

among architecture components, similarly to basic MSCs used in [67], (2)

the control flow between these sequences of interactions, similarly to high-

level MSCs used in [67].

Figure 74 Synthesis

approach using A-MUSE

DSL as scenario

modelling language

 SYNTHESIS FROM SCENARIO 131

Our synthesis approach starts by specifying an A-MUSE DSL scenario,

which represents the service design refined model (SDRM) that reveals the

components of our architecture. From this scenario we synthesized an LTS

that represents the required behaviour of the system from the perspective of

the coordinator component, which orchestrates all the other components

of our reference architecture (step 1.a in Figure 74). From the resulting

LTS, we synthesized an MTS that considers also possible (but not necessarily

required) behaviour in order to extend the limited set of example

behaviours represented in the LTS (step 2.a in Figure 74). In parallel, we

realised a behaviour synthesis from FLTL properties that extend the

considered A-MUSE DSL scenario (steps 1.b and 2.b in Figure 74). This

synthesis from properties resulted in an MTS that specifies possible

behaviour that does not violate the desired properties. Finally, we merged

the two MTSs from properties and scenarios in one MTS (step 3 in Figure

74), which represents the behaviour of the system from the perspective of

our coordinator and corresponds to the service design component model

(SDCM) of our methodology. Therefore, the approach in Figure 74

performs the synthesis transformation from SDRM to SDCM. The final

MTS representing our SDCM model should be taken as input to create an

implementation of the coordinator using some specific technology.

However, since this MTS represents both required and possible behaviour, it

can be further refined in an LTS that represents only required behaviour

(step 4 in Figure 74) by recursively applying the synthesis approach for new

properties and scenarios.

7.2 Synthesis from Scenario

Figure 75 to Figure 77 show the A-MUSE DSL scenario we have used as

starting point of our synthesis approach. This scenario represents the

Remove Buddy and Proximity functions of the Live Contacts application

already adopted as running example in Chapter 6.

132 CHAPTER 7 BEHAVIOUR SYNTHESIS

USING TRANSITION SYSTEMS

Figure 75 shows the Remove Buddy function at the SDRM level (see Section

6.3). Since the SDRM level represents a behaviour distributed among

system components, Figure 75 shows with annotations the components

involved in the interactions, which are the user agent (UA), coordinator (C)

and database (DB) components of our reference architecture. A removeReq

interaction between the user agent and coordinator (UA to C) is followed by

a findRemReq request (C to DB) and a findRemRsp response (DB to C) to/from

the database. Depending on the database response, the coordinator

removes the buddy from the users‟ list (removeBuddy) and sends a positive

response to the user agent (removeAcc). Otherwise, a negative response

removeRej is sent to the user agent.

Figure 75 Scenario in

A-MUSE DSL, part 1

 SYNTHESIS FROM SCENARIO 133

Figure 76 shows the Proximity function at the SDRM level (see Section 6.3),

which involves the coordinator (C), context source (CS), database (DB) and

user agent (UA) components of our reference architecture. Figure 76 shows

that the coordinator can subscribe for a proximity event to the context

sources (C to CS) via a subscribeProximity request. Upon the occurrence of a

proximity event, the context source notifies the coordinator with a

proximityChange interaction (CS to C). After a request/response interaction

with the database (findBuddyReq and findBuddyRsp) and the context sources

(IMstatusReq and IMstatusRsp), the coordinator generates a proximityAlert to

the user agent (C to UA) in order to notify the user about the proximity

event. Any time after subscribing, the coordinator can also unsubscribe to

the proximity event with the unsubscribeProximity request in Figure 76.

Figure 76 Scenario in

A-MUSE DSL, part 2

134 CHAPTER 7 BEHAVIOUR SYNTHESIS

USING TRANSITION SYSTEMS

Figure 77 shows the (Live Contacts) Session behaviour, which represents the

way our application handles the Remove Buddy and Proximity functions

mentioned above. These functions are two alternative threads of control.

When a chosen thread ends, a Session instance follows and a new alternative

can be chosen again.

7.2.1 From A-MUSE DSL scenarios to LTSs

According to the technique for synthesis from scenarios in [64], we have

used the A-MUSE DSL scenario described above to synthesize an LTS. In

order to achieve this, we have adapted the steps in [67] as follows:

a. For each component involved in the Remove Buddy function, namely the

user agent, coordinator and database components, we synthesized an

LTS using the scenario in Figure 75. By doing so, we obtained three

partial LTSs that describe part of the scenario from the perspective of a

specific component.

b. For each component involved in the Proximity function, namely the

context source, coordinator, database and user agent components, we

synthesized an LTS using the scenario in Figure 76. By doing so, we

obtained four partial LTSs that describe part of the scenario from the

perspective of a specific component.

c. For each component involved in the whole scenario, namely the context

source, coordinator, database and user agent components, we combined

the LTS obtained for the Remove Buddy function (see step a above) with

the LTS obtained for the Proximity function (see step b above) using the

scenario in Figure 77. By doing so, we obtained four complete LTSs that

describe the whole scenario from the perspective of a specific

component.

d. We combined the partial LTSs obtained in step c in one LTS that

describes the whole scenario from the perspective of the system.

Figure 77 Scenario in

A-MUSE DSL, part 3

 SYNTHESIS FROM SCENARIO 135

In the following we elaborate on these steps and provide examples. The

following definition of LTS provides some background to understand our

examples. More details on LTSs can be found in [64].

Let States be a universal set of states, and Act be a universal set of observable

action labels. An LTS is a tuple (S, A, , s
0
), where S  States is a finite set of

states, A  Act is a set of labels,   (S  A  S) is a transition relation, and

s
0
 S is the initial state.

In our scenario, the finite set of action labels consists of A = {removeReq,

findRemReq, findRemRsp, removeBuddy, removeAcc, removeRej, subscribeProximity,

unsubscribeProximity, proximityChange, findBuddyReq, findBuddyRsp, IMstatusReq,

IMstatusRsp, proximityAlert}. These labels represent the interactions shown in

Figure 75 and Figure 76. An LTS that represents the behaviour of a specific

component uses (part of) these action labels. For example, Figure 78 shows

the LTSs that represent the behaviour of the user agent component.

0 1

removeReq

{removeAcc, removeRej}

0 proximityAlert

0 1

removeReq

{removeAcc, removeRej}

proximityAlertproximityAlert

(a) (b)

(c)

0 1

removeReq

{removeAcc, removeRej}

0 1

removeReq

{removeAcc, removeRej}

0 proximityAlert0 proximityAlert

0 1

removeReq

{removeAcc, removeRej}

proximityAlertproximityAlert 0 1

removeReq

{removeAcc, removeRej}

proximityAlertproximityAlert

(a) (b)

(c)

Figure 78.(a) shows an LTS that represents the user agent behaviour in the

Remove Buddy function (see step a mentioned above). This LTS consists of

the states S = {so, s1} and action labels A = {removeReq, removeBuddy,

removeAcc}, which are the interactions that involve the user agent (UA) in the

scenario in Figure 75. In this LTS, the user agent sends a request

(removeReq) and waits for a confirmation whether this request has been

accomplished (remove Acc) or not (remove Rej).

Figure 78.(b) shows an LTS that represents the user agent behaviour in

the Proximity function (see step b mentioned above). This LTS consists of

only one state S = {so} and action label A = {proximityAlert}, which is the only

interaction that involve the user agent (UA) in the scenario in Figure 76. This

Definition 11 Labelled

Transition Systems

Figure 78 User agent

behaviour

136 CHAPTER 7 BEHAVIOUR SYNTHESIS

USING TRANSITION SYSTEMS

LTS shows that the user agent is in a state that waits for a proximityAlert to

happen.

Figure 78.(c) shows an LTS that represents the combined behaviour of

the user agent in the Remove Buddy and Proximity functions (see step c

mentioned above). This LTS consists of the states S = {so, s1} and action

labels A = {removeReq, removeBuddy, removeAcc, proximityAlert}.

Figure 79 shows the LTSs that represent the behaviour of the

coordinator component.

0
2

findRemReq removeBuddy

3

findRemRsp

1

removeReq

removeRej

4

removeAcc

5

subscribeProximity

unsubscribeProximity

0
2

proximityChange

3

findBuddyReq

1

IMstatusReq

4

proximityAlert

findBuddyRsp

IMstatusRsp

(a)

(b)

(c)

0
2

findRemReq removeBuddy

3

findRemRsp

1

removeReq

removeRej

4

removeAcc

9

subscribeProximity

unsubscribeProximity

6

proximityChange

7

findBuddyReq

5

IMstatusReq

8

proximityAlert

findBuddyRsp

IMstatusRsp

0
2

findRemReq removeBuddy

3

findRemRsp

1

removeReq

removeRej

4

removeAcc

0
2

findRemReq removeBuddy

3

findRemRsp

1

removeReq

removeRej

4

removeAcc

5

subscribeProximity

unsubscribeProximity

0
2

proximityChange

3

findBuddyReq

1

IMstatusReq

4

proximityAlert

findBuddyRsp

IMstatusRsp

5

subscribeProximity

unsubscribeProximity

0
2

proximityChange

3

findBuddyReq

1

IMstatusReq

4

proximityAlert

findBuddyRsp

IMstatusRsp

(a)

(b)

(c)

0
2

findRemReq removeBuddy

3

findRemRsp

1

removeReq

removeRej

4

removeAcc

9

subscribeProximity

unsubscribeProximity

6

proximityChange

7

findBuddyReq

5

IMstatusReq

8

proximityAlert

findBuddyRsp

IMstatusRsp

0
2

findRemReq removeBuddy

3

findRemRsp

1

removeReq

removeRej

4

removeAcc

9

subscribeProximity

unsubscribeProximity

6

proximityChange

7

findBuddyReq

5

IMstatusReq

8

proximityAlert

findBuddyRsp

IMstatusRsp

Figure 79.(a) represents the LTS synthesized from the Remove Buddy

scenario in Figure 75. This LTS consists of the states S = {so, s1, s2, s3, s4}

and action labels A = {removeReq, findRemReq, findRemRsp, removeBuddy,

removeAcc}, which are the interactions that involve the coordinator (C),

namely all the interactions represented in Figure 75.

Figure 79.(b) shows the coordinator behaviour in the Proximity function

(see step b mentioned above). This LTS consists of the states S = {so, s1, s2,

s3, s4} and action labels A = {subscribeProximity, unsubscribeProximity,

Figure 79 Coordinator

behaviour

 SYNTHESIS FROM SCENARIO 137

proximityChange, findBuddyReq, findBuddyRsp, IMstatusReq, IMstatusRsp,

proximityAlert}, which are obtained from the interactions that involve the

coordinator (C), namely all the interactions in Figure 76. The A-MUSE DSL

scenario in Figure 76 shows that the interactions {findBuddyReq, findBuddyRsp}

and {IMstatusReq, IMstatusRsp} are executed concurrently by the coordinator.

We represented this in our LTS with the transitions (s2, findBuddyReq, s3),

(s3, findBuddyRsp, s4), (s2, IMstatusReq, s5), and (s4, IMstatusRsp, s5).

Figure 79.(c) shows the combined LTS for the Remove Buddy and Proximity

functions (see step c mentioned above). This LTS has been combined using

the scenario in Figure 77, which represents the Remove Buddy and Proximity

functions as alternative choices. Therefore, the corresponding LTS in Figure

79 also represents these functions as alternative choices.

Figure 80 shows the LTSs that represent the behaviour of the database

component according to steps a, b and c mentioned above.

0 1

findRemReq

removeBuddy

2

findRemRsp

0 1

findBuddyReq

findBuddyRsp

0
2

findRemReq

removeBuddy

3

findRemRsp

1

findBuddyReq

findBuddyRsp

(a) (b)

(c)

0 1

findRemReq

removeBuddy

2

findRemRsp

0 1

findRemReq

removeBuddy

2

findRemRsp

0 1

findBuddyReq

findBuddyRsp

0 1

findBuddyReq

findBuddyRsp

0
2

findRemReq

removeBuddy

3

findRemRsp

1

findBuddyReq

findBuddyRsp

0
2

findRemReq

removeBuddy

3

findRemRsp

1

findBuddyReq

findBuddyRsp

(a) (b)

(c)

Figure 81 shows the LTS that represents the behaviour of the context source

component according to steps b mentioned above. Since the context source

component is only involved in the Proximity function, steps a and c discussed

above were not necessary for this component.

Figure 80 Database

behaviour

138 CHAPTER 7 BEHAVIOUR SYNTHESIS

USING TRANSITION SYSTEMS

subscribeProximity

unsubscribeProximity

0
2

proximityChange

31

IMstatusReq

IMstatusRsp

subscribeProximity

unsubscribeProximity

0
2

proximityChange

31

IMstatusReq

IMstatusRsp

Figure 82 shows the final LTS for our scenario. This LTS has been

synthesized following step d mentioned above, namely by combining the

partial LTSs represented from Figure 78 to Figure 81 (part c). Since the

coordinator component orchestrates the other components of our

reference architecture and is involved in all the interactions considered in

our scenario, our final LTS is synthesized from the perspective of the

coordinator. Therefore, Figure 82 corresponds to the LTS already presented

in Figure 79, part c.

0
2

findRemReq removeBuddy

3

findRemRsp

1

removeReq

removeRej

4

removeAcc

9

subscribeProximity

unsubscribeProximity

6

proximityChange

7

findBuddyReq

5

IMstatusReq

8

proximityAlert

findBuddyRsp

IMstatusRsp

0
2

findRemReq removeBuddy

3

findRemRsp

1

removeReq

removeRej

4

removeAcc

9

subscribeProximity

unsubscribeProximity

6

proximityChange

7

findBuddyReq

5

IMstatusReq

8

proximityAlert

findBuddyRsp

IMstatusRsp

In the LTS in Figure 82, the finite set of states consists of S = {s1, s2, s3, s4,

s5, s6, s7, s8, s9} and the set of action labels consists of A = {removeReq,

findRemReq, findRemRsp, removeBuddy, removeAcc, removeRej, subscribeProximity,

unsubscribeProximity, proximityChange, findBuddyReq, findBuddyRsp, IMstatusReq,

IMstatusRsp, proximityAlert}.

7.2.2 From LTSs to MTSs

An MTS is a structure (S, A, r

, p

, s
0
), where r

  p

, (S, A, r

, s
0
) is an

LTS representing required transitions of the system and (S, A, p

, s
0
) is an LTS

representing possible (but not necessarily required) transitions.

The LTS in Figure 82 represents only required transitions that we explicitly

decided to include in our scenario. However, we should also add to this

Figure 81 Context

Source behaviour

Figure 82 LTS from

A-MUSE DSL scenario

Definition 12 Modal

Transition Systems

 SYNTHESIS FROM SCENARIO 139

scenario possible (but not necessarily required) transitions that do not violate

the system behaviour. As discussed in Section 4.1, a behaviour model

synthesized from scenarios includes a limited set of example behaviours that

the modelled application can assume. However, there are other possible

behaviours that have not been considered yet. Therefore, we synthesized the

MTS in Figure 83 that considers also this possible behaviour. In this MTS,

possible transitions are distinguished from required transitions by a question

mark that follows the transition label. In order to avoid clogging Figure 83,

only part of our MTS is shown, which corresponds to states S = {s0, s1, s2,

s3, s4, s5} in Figure 82. State s6 in Figure 83 is a sink state that we have

added during the synthesis according to the algorithm in [64], which is

explained in the sequel. This sink state s6 should not be confused with the

state s6 in Figure 82. The set of action labels considered in Figure 83 is A =

{removeReq, findRemReq, findRemRsp, removeBuddy, removeAcc, removeRej,

subscribeProximity, unsubscribeProximity}. Some of these action labels are shown

in Figure 83 in a short form for illustration purposes. For example, the

remReq label is used instead of removeReq, without loss of clarity.

We have obtained the MTS in Figure 83 from the LTS in Figure 82 using

the MTSscen algorithm proposed in [64] as follows:

– we added a sink state to the LTS in Figure 82. The sink state is

represented in Figure 83 using a state s6;

– we added a possible looping transition (labelled with a question mark) to

this sink state for every action a  A. This is represented in Figure 83

using the looping transition in state s6 with labels {remReq?, findRemReq?,

findRemRsp?, remBuddy?, remAcc?, remRej?, subProximity?, unsubProximity?};

– for each state s  S, such that there is no outgoing required transition, we

added a possible transition to the sink state s6. For example, consider the

state s0 in the LTS in Figure 82. The only outgoing required transition is

(s0, remReq, s1). Therefore, in the corresponding MTS we added a

possible transition to the sink state s6 for each action label a  A, except

for the remReq action label. This is represented in Figure 83 by the

transition (s0, {findRemReq?, findRemRsp?, remBuddy?, remAcc?, remRej?,

subProximity?, unsubProximity?}, s6). Analogously, we have added these

possible transitions to state s6 but with different labels for the remaining

states s1, s2, s3, s4, s5, as shown in Figure 83.

140 CHAPTER 7 BEHAVIOUR SYNTHESIS

USING TRANSITION SYSTEMS

0 2

findRemReq
remBuddy

3

findRemRsp

1

remReq

remRej

4

remAcc

unsubProximity

5

remReq?, findRemReq?,

findRemRsp?, remBuddy?,

remAcc?, remRej?,

subProximity?

6

findRemReq?, findRemRsp? remBuddy?,

remAcc?, remRej?, unsubProximity?

remReq?, findRemRsp?, remBuddy?, remAcc?,

remRej?, subProximity?, unsubProximity?

subProximity

remReq?, findRemReq?,

remBuddy?, remAcc?,

remRej?, subProximity?,

unsubProximity?

remReq?, findRemReq?, findRemRsp?, remAcc?,

subProximity?, unsubProximity?

remReq?, findRemReq?,

findRemRsp?,

remBuddy?, remRej?,

subProximity?,

unsubProximity?

remReq?,

findRemReq?,

findRemRsp?,

remAcc?,

remRej?,

subProximity?,

unsubProximity?

00 22

findRemReq
remBuddy

33

findRemRsp

11

remReq

remRej

44

remAcc

unsubProximity

55

remReq?, findRemReq?,

findRemRsp?, remBuddy?,

remAcc?, remRej?,

subProximity?

66

findRemReq?, findRemRsp? remBuddy?,

remAcc?, remRej?, unsubProximity?

remReq?, findRemRsp?, remBuddy?, remAcc?,

remRej?, subProximity?, unsubProximity?

subProximity

remReq?, findRemReq?,

remBuddy?, remAcc?,

remRej?, subProximity?,

unsubProximity?

remReq?, findRemReq?, findRemRsp?, remAcc?,

subProximity?, unsubProximity?

remReq?, findRemReq?,

findRemRsp?,

remBuddy?, remRej?,

subProximity?,

unsubProximity?

remReq?,

findRemReq?,

findRemRsp?,

remAcc?,

remRej?,

subProximity?,

unsubProximity?

7.3 Synthesis from Properties

The scenario discussed in Section 7.2 is not sufficient to cover all the

possible interactions related to the remove buddy and proximity functions. For

example, consider a user that has removed a buddy from his contact list.

The removal of this buddy implies that the user should stop receiving

proximity alerts about the removed buddy. Therefore, after the remBuddy

action in Figure 75, the coordinator should unsubscribe the proximity event

for that buddy with the unsubProximity action in Figure 76. However, this

relation is not explicitly represented by the A-MUSE DSL in our models,

since the two behaviours for the remove buddy and proximity functions are

designed to be independent (see Figure 77). Therefore, we can represent

this relation as a safety property, which specifyies that “nothing bad can

happen”. Safety properties can be expressed, for example, by using Fluent

Temporal Logic (FLTL) as recommended in [64-65] because FLTL

provides a uniform framework for specifying and model-checking state-

based temporal properties in event-based models. The FLTL property for

the interaction between remBuddy and unsubProximity is the following:

P = G (remBuddy  X unsubProximity)

This formalization of P states that when the remBuddy action occurs, then

the next event (X) to occur is the unsubProximity action. According to the

technique for synthesis from properties in [64], we have generated an LTS

from the safety property P, as shown in Figure 120. The set of action labels

Figure 83 MTS from

A-MUSE DSL scenario

 SYNTHESIS FROM PROPERTIES 141

considered in Figure 120 is the complete set of interactions of our remove

buddy and proximity examples, namely A = {remReq, findRemReq, findRemRsp,

remBuddy, remAcc, remRej, subProximity, unsubProximity, proximityChange,

findBuddyReq, findBuddyRsp, IMstatusReq, IMstatusRsp, proximityAlert}.

remBuddy

unsubProximity

0-1
1

remReq, findRemReq, findRemRsp, remBuddy, remAcc, remRej,

subProximity, proximityChange, findBuddyReq, findBuddyRsp,

IMstatusReq, IMstatusRsp, proximityAlert

remReq, findRemReq, findRemRsp,

remAcc, remRej, subProximity,

unsubProximity, proximityChange,

findBuddyReq, findBuddyRsp,

IMstatusReq, IMstatusRsp,

proximityAlert

The LTS in Figure 120 is a Büchi automaton B(P) [64-65] with an error

state s-1 that represents all the transitions with action labels a  A that

violate the property P. In other words, the sequence {(s0, remBuddy, s1), (s1,

unsubProximity, s0)} in Figure 120 represent our safety property P = G

(remBuddy  X (unsubProximity)), while (s1, {remReq, findRemReq, findRemRsp,

remAcc, remRej, subProximity, proximityChange, findBuddyReq, findBuddyRsp,

IMstatusReq, IMstatusRsp, proximityAlert}, s-1) represents the behaviour that

violates the property P. For example, the sequence {(s0, remBuddy, s1), (s1,

remReq, s-1)} represents undesired behaviour because it leads to the the

error state s-1, while the only desired behaviour that should follow the (s0,

remBuddy, s1) transition consists of (s1, unsubProximity, s0) as stated in our

safety property P.

 Analogously to the synthesis from scenario, in the synthesis from

properties one can be interested in adding possible but not necessarily

required transitions to an LTS. Therefore, we synthesized the MTS in Figure

85 from the LTS in Figure 120 using the MTSprop algorithm proposed in

[64].

Figure 84 LTS from

properties

142 CHAPTER 7 BEHAVIOUR SYNTHESIS

USING TRANSITION SYSTEMS

remBuddy?

unsubProximity

0
1

remReq?, findRemReq?, findRemRsp?,

remAcc?, remRej?, subProximity?,

unsubProximity?, proximityChange?,

findBuddyReq?, findBuddyRsp?,

IMstatusReq?, IMstatusRsp?,

proximityAlert?

remBuddy?

unsubProximity

0
1

remReq?, findRemReq?, findRemRsp?,

remAcc?, remRej?, subProximity?,

unsubProximity?, proximityChange?,

findBuddyReq?, findBuddyRsp?,

IMstatusReq?, IMstatusRsp?,

proximityAlert?

The MTS in Figure 85 has been obtained by (1) removing the error state s-1

from the LTS Figure 120 and (2) for each state s  S with more than one

outgoing transition (state s0 in our example) converting all these outgoing

transitions to possible transitions. More details on how to generate LTSs and

MTSs from properties can be found in [64].

7.4 Synthesis from Properties and Scenarios

The MTS synthesized from properties in Figure 85 and the MTS synthesized

from scenarios in Figure 83 can be finally merged in one MTS, as shown in

Figure 86. A merged MTS preserves the original properties and scenario

intended for the system under development, as demonstrated in [64]. In

this way, we can guarantee correctness and consistency of system behaviour

during the development steps towards the final system implementation

when using the discussed technique for behaviour synthesis from properties

and scenarios.

0 2

findRemReq
remBuddy

3

findRemRsp

1

remReq

remRej

4

remAcc

unsubProximity

5

remReq?, findRemReq?,

findRemRsp?, remBuddy?,

remAcc?, remRej?,

subProximity?

6

findRemReq?, findRemRsp? remBuddy?,

remAcc?, remRej?, unsubProximity?

remReq?, findRemRsp?, remBuddy?, remAcc?,

remRej?, subProximity?, unsubProximity?

subProximity

remReq?, findRemReq?,

remBuddy?, remAcc?,

remRej?, subProximity?,

unsubProximity?

remReq?, findRemReq?, findRemRsp?, remAcc?,

subProximity? unsubProximity?

remReq?, findRemReq?,

findRemRsp?,

remBuddy?, remRej?,

subProximity?

remReq?,

findRemReq?,

findRemRsp?,

remAcc?,

remRej?,

subProximity?,

unsubProximity?

unsubProximity

00 22

findRemReq
remBuddy

33

findRemRsp

11

remReq

remRej

44

remAcc

unsubProximity

55

remReq?, findRemReq?,

findRemRsp?, remBuddy?,

remAcc?, remRej?,

subProximity?

66

findRemReq?, findRemRsp? remBuddy?,

remAcc?, remRej?, unsubProximity?

remReq?, findRemRsp?, remBuddy?, remAcc?,

remRej?, subProximity?, unsubProximity?

subProximity

remReq?, findRemReq?,

remBuddy?, remAcc?,

remRej?, subProximity?,

unsubProximity?

remReq?, findRemReq?, findRemRsp?, remAcc?,

subProximity? unsubProximity?

remReq?, findRemReq?,

findRemRsp?,

remBuddy?, remRej?,

subProximity?

remReq?,

findRemReq?,

findRemRsp?,

remAcc?,

remRej?,

subProximity?,

unsubProximity?

unsubProximity

The MTS from properties and scenarios in Figure 86 is rather similar to the

MTS from scenarios in Figure 83. The differences between these two MTSs

Figure 85 MTS from

properties

Figure 86 MTS from

properties and scenarios

 DISCUSSION 143

are the addition to the MTS in Figure 86 of the required transition (s4,

unsubProximity, s0) and the removal of the possible transition (s4,

unsubProximity?, s6) from the MTS in Figure 83. In our example we have used

only the property P = G(remBuddy  X unsubProximity), otherwise the example

would have become too big for illustration purposes. However, additional

properties can be defined to explicitly represent other relations between

the remove buddy and proximity functions, as well as between other

functions of the Live Contacts running example. By adding new properties,

we may reduce the possible transitions in Figure 86 until only required

transitions remain. In this case, we obtain again an LTS. In practice, it may

not be necessary to refine the MTS into a single LTS, since the designer

may explicitly decide to leave some behavioural choices open further down

in the development process [64].

7.5 Discussion

While synthesizing our coordinator component from properties and

scenarios, we could extract our scenarios from the A-MUSE DSL in a

straightforward way. From the A-MUSE DSL behaviour models that

represent application functions, such as the remove buddy and proximity

functions in our example (see Figure 75 and Figure 76), we could extract

sequences of interactions among architectural components, similarly to

basic Message Sequence Charts used to extract secanarios in [67]. From the

high-level structure of these A-MUSE DSL behaviour models (see Figure

77), we could extract the control flow between different functions, similarly

to high-level Message Sequence Charts used to extract secanarios in [67]

(see Section 4.1). Moreover, the A-MUSE DSL allowed us to raise the

abstraction level of the behaviour synthesis technique in [64], which starts

the synthesis from a behaviour that already reveals the architecture of the

system under development. In contrast, by using the A-MUSE DSL one can

specify a high-level behaviour that is independent of any specific

architecture component, and exploit our transformation based on patterns

(see Section 6.4) to automatically assign this behaviour to specific

components. Concerning the suitability of the adopted languages, we also

realised that LTSs and MTSs are an excellent means to handle concurrency

and synchronization issues that arised in our methodology because of the

use of patterns. However, we learned that scalability aspects are critical

when using these LTSs and MTSs, since already in a limited example, such

as the remove buddy and proximity functions presented in this chapter, our

models became big and difficult to handle for illustration purposes.

We have created the LTSs and MTSs discussed in this chapter manually

in order to assess the applicability of the behaviour synthesis technique

144 CHAPTER 7 BEHAVIOUR SYNTHESIS

USING TRANSITION SYSTEMS

from properties and scenarios in [64] to our methodology. The assessment

was positive and we have been able to generate a merged MTS from

properties and scenario that represents the behaviour of our coordinator

component by systematically applying the steps prescribed in [64]. The

resulting MTS corresponds to the behaviour of the coordinator component

at the service design component model (SDCM) level of our methodology,

while the given scenario corresponds to the service design refined model

(SDRM). Therefore, the proposed technique is suitable to perform the

SDRMtoSDCM behaviour synthesis transformation of our methodology. We

have learned that this transformation can be automated using the LTSA

[132] and MTSA [133] tools. We used the LTSA tool to specify the LTSs

and to compose them for the synthesis purpose. We could use the MTSA

tool to automatically generate the MTSs from scenarios expressed as basic

Message Sequence Charts and high-level Message Sequence Charts. Finally,

for scenarios represented using the A-MUSE DSL, the Medini QVT tool

can be used to automatically generate these scenarios from A-MUSE DSL

abstract specifications, as discussed in Chapter 6.

Chapter

8

8. Behaviour Refinement and Synthesis

using BPMN

This chapter presents a technique that uses BPMN as modelling language

for behaviour refinement and synthesis at the PIM level of our

methodology. The chapter discusses the source and target models of our

PIM behaviour refinement and synthesis transformations, and presents

these transformations as well. The service specification (SS) and service design

refined model (SDRM) are the source and target models of the SStoSDRM

behaviour refinement transformation, respectively. The service design refined

model (SDRM) and the service design component model (SDCM) are the source

and target models of the SDRMtoSDCM behaviour synthesis transformation,

respectively. The SS, SDRM and SDCM models are represented using

BPMN. We realised a prototype of the SStoSDRM refinement and

SDRMtoSDCM synthesis transformations using the ATL transformation

engine. This chapter introduces and justifies the mappings we have used to

create the ATL transformation specification taken as input in our

experiment, abstracting from the specific ATL language constructs.

This chapter is organised as follows: Sections 8.1 and 8.2 present the SS

and SDRM models, respectively, Section 8.3 discusses the SStoSDRM

refinement transformation, Section 8.4 presents the SDCM model, Section

8.5 discusses the SDRMtoSDCM synthesis transformation and, finally, Section

8.6 discusses our experience with BPMN as modelling language.

8.1 Service Specification

The service specification represents the interactions between the system

under development, considered as a black box, and its user. In the

following Sections we show how these interactions can be represented in

146 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

BPMN using the remove buddy and proximity functions of the Live Contacts
running example introduced in Chapter 6.

8.1.1 High-level structure

Figure 87 shows the high-level structure of the service specification for the
Live Contacts running example using BPMN. This specification represents a
behaviour equivalent1 to the one expressed in the A-MUSE DSL
specification shown in Figure 62.

Figure 87 consists of a BPMN choreography diagram that represents the
interactions between the two participants System and User, which represent
the Live Contacts application and one of its users, respectively. In order to
access the services offered by the system, the user must first Sign In. Once
the user has signed in, he can decide to start a Session and eventually to Sign

Out and exit the application. Sign In and Session are represented as a BPMN
collapsed choreography sub-process (a choreography with a “+” marker),
which is a compound choreography that can be refined into a finer level of
detail. In contrast, Sign Out is represented as an atomic choreography task
with a signOut message flow attached to the (unshaded) participant User,
which is the initiator of the choreography task. The Session choreography
sub-process is shown in Figure 88 and represents a behaviour equivalent to
the one expressed in the A-MUSE DSL session specification shown in
Figure 63.

1 Our notion of equivalence is intuitive and no formal verification of this notion was
performed in this thesis.

Figure 87 Live Contacts
service specification, SS

 SERVICE SPECIFICATION 147

Once the user has entered a session, the application waits for an event to

happen, which is represented in Figure 88 using an event-based gateway

element. This event allows the user to choose between the (alternative)

functions offered by the Live Contacts application and discussed in Chapter

6 (see Table 5). When the chosen function is completely perfomed, a new

Service Specification choreography sub-process is started and a new service

function can be chosen. Each service function is represented as a collapsed

choreography sub-process that can be refined into further detail. In the

following Sections we discuss the Remove Buddy and Proximity service

functions.

8.1.2 Service functions

Figure 89 and Figure 90 zoom into the detail of the Remove Buddy and

Proximity service functions, respectively.

Figure 88 SS, Session

148 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

The Remove Buddy function (choreography sub-process element) in Figure 89

consists of a choreography task element named Remove Request followed either

by a choreography task element named Remove Acceptance, or a choreography

task element named Remove Rejection. We used choreography task elements as

interaction markers (see Section 3.2), namely as placeholders for abstract

interactions at the SS level that correspond to (more concrete) refined

interactions among specific components at the SDRM level.

The Remove Buddy function in Figure 89 starts with a Remove Request task in

which the User initiates the interaction by sending a removeReq message to

the System with the name of the buddy to be removed (String name). As a

consequence, the System evaluates with an exclusive decision gateway element

whether the required buddy is actually in the list of the user. In case this

buddy is in the list, the exclusive decision is followed by a Remove

Acceptance task, in which the System removes the buddy from the user list

and acknowledges the user about this removal (removeAcc message). In case

the buddy is not the list and cannot be removed, the exclusive decision is

followed by a Remove Rejection task with a removeRej message to the user.

The status information handled by the Remove Buddy function in Figure 89 is

defined in the Live Contacts information model (see Section 6.1.1). This

information is shown in Figure 89 using textual annotations attached to

message flow elements.

The Proximity function (choreography sub-process element) in Figure 90

consists of a signal event element named proximityEvent followed either by a

Figure 89 SS, Remove

Buddy

 SERVICE DESIGN REFINED MODEL 149

choreography task element named Proximity Event Alert, or the termination of

the Proximity function. We use these signal event and choreography task

elements as interaction markers for the Proximity function.

Figure 90 shows that the Proximity function starts with a proximityEvent signal.

This signal notifies the occurrence of a proximity situation (see Section

6.1.2) when a buddy (Buddy b), whose IM status is “online”

(IsOnline(proximityEvent.b): Boolean condition) is nearby the user. As a

consequence, the application warns the user with an alert (proximityAlert

message). Alternatively, namely if the IM status of the buddy is not “online”

in the application, the Proximity function ends without warning the user and

a new function can be chosen.

8.2 Service Design Refined Model

The service design refined model refines the functions at the SS level into

more concrete interactions that are performed by components of the

reference architecture, which is recalled in Figure 91.

Figure 90 SS, Proximity

150 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

user

buddy

Presentation
Component

Presentation
Component

USER CONTEXT

BUDDY CONTEXT

User
Agent

Service
Trader

User
Agent

Action Providers

Email Service

Phone Service

Chat Service

SMS Service

context
changes

context
changes

user
input
events

context
events

discover

(Outlook) Calendar Service

(IM) Presence Service

(GPS) Location Service

Context Sources

register

register

Coordinator

DataBase

search & update

execute actions

execute actions

trigger
actions

user

buddy

Presentation
Component

Presentation
Component

Presentation
Component

Presentation
Component

USER CONTEXT

BUDDY CONTEXT

User
Agent
User
Agent

Service
Trader

User
Agent
User
Agent

Action Providers

Email Service

Phone Service

Chat Service

SMS Service

Action Providers

Email Service

Phone Service

Chat Service

SMS Service

context
changes

context
changes

user
input
events

context
events

discover

(Outlook) Calendar Service

(IM) Presence Service

(GPS) Location Service

Context Sources

(Outlook) Calendar Service

(IM) Presence Service

(GPS) Location Service

Context Sources

register

register

Coordinator

DataBase

search & update

execute actions

execute actions

trigger
actions

Below we discuss the refinement of the Remove Buddy and Proximity

functions according to this architecture.

8.2.1 Remove Buddy refinement

Figure 92 zooms into the details of the Remove Buddy function, which

involves the User Agent, Coordinator and Database components. The status

information handled by this function is the same as depicted in Figure 89,

but assigned to the proper corresponding component of the reference

architecture.

The Remove Buddy function in Figure 92 consists of five basic interaction

patterns (see Section 3.3), namely recurrent interactions between

components of our reference architecture (two components per basic

interaction pattern). These basic patterns are Remove Request, Remove

Search, Remove Update, Remove Acceptance and Remove Rejection, and we

composed them using some sequence flow elements and an exclusive decision

gateway element in order to form the Remove Buddy function. Therefore, we

consider the Remove Buddy function as a composite interaction pattern.

Figure 91 Reference

architecture for context-

aware mobile

applications

 SERVICE DESIGN REFINED MODEL 151

Figure 92 represents the following behaviour:

1. In order to remove one of the user‟s buddies from the contact list, the

user agent should inform the coordinator about the removal request.

This is represented as a Remove Request pattern, in which the User Agent

sends a removeReq message that contains the name of the buddy to be

removed (String name) to the Coordinator.

2. In order to assure that the buddy to be removed is actually in the

contact list of the user, the coordinator should retrieve the

corresponding buddy‟s values from the database. This is represented as

a two-way Remove Search basic interaction pattern, in which (a) the

Coordinator sends to the Database an operation request findRemReq, (b)

the Database performs this operation, and (c) the Database sends back

the operation return value (Buddy b) to the Coordinator with a findRemReq

message.

3. In case the search return value is not empty (findRemRsp.b condition),

i.e., the buddy is actually in the contact list of the user, the coordinator

should remove this buddy as requested by the user. This is represented

as a one-way Remove Update basic interaction pattern, in which the

Coordinator requests the removal of the buddy from the Database with a

removeBuddy message. This is followed by the one-way Acceptance

Response basic interaction pattern, in which the Coordinator informs the

User Agent about the successful removal of the requested buddy

(removeAcc message).

4. In case the return value is empty (!findRemRsp.b condition), i.e., the

buddy is not in the user‟s contact list, the coordinator should inform

Figure 92 SDRM,

Remove Buddy

152 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

the user about the impossibility of removing this buddy. This is

represented as a one-way Rejection Response basic interaction pattern, in

which the Coordinator informs the User Agent with a removeRej message

that the removal request could not be fulfilled.

8.2.2 Proximity refinement

Figure 93 zooms into the details of the Proximity function, which involves the

Coordinator, Context Source, Database and User Agent components. The context

source is the component dedicated to sense changes in the user‟s context

and provides the coordinator with context events. As discussed in Section

6.3.2, although there are several context sources distributed in the

environment, we assume in Figure 93 that only one context source

communicates with the coordinator at a time, namely the context source

that has sensed the event of interest. In order to avoid clogging the figure,

we have not included the status information handled by these components.

This information is the same as depicted in Figure 90, but assigned to the

proper corresponding component of the reference architecture.

The Proximity function in Figure 93 represents a composite interaction

pattern that consists of six basic interaction patterns named Proximity Subscribe,

Figure 93 SDRM,

Proximity

 SERVICE DESIGN REFINED MODEL 153

Proximity Unsubscribe, Proximity Signal Event, Proximity Search, Proximity Context

Query and Proximity Event Alert. Figure 93 represents the following behaviour:

1. In order to receive proximity events the coordinator should subscribe to

the context source for those events. This is represented with a decision

controlled by a variable named Subscribed. In case the Subscribed variable

is false, a Proximity Subscribe basic interaction pattern should be perfomed

in order to subscribe the Coordinator to the Context Source. The

subscribeProximity message sent by the Coordinator to the Context Source

contains information that refers to the context model discussed in

Section 6.1.2 (see Figure 61). Once the subscription is done, the

Subscribed variable must be set to true.

2. In order to stop receiving proximity events the coordinator should

unsubscribe to the context source for those events. This is represented

with the Proximity Unsubscribe basic interaction pattern, in which the

Coordinator stops the subscription to the Context Source. As a consequence

of this unsubscription, the Subscribed variable must be set to false.

3. Whenever a proximity event takes place, the coordinator should be

warned by the context source. This is represented with a proximityChange

signal event generated eventually by the Context Source to the Coordinator,

after which the Subscribed variable must be set to true. The actual

implementation of the context subscription and notification

mechanisms falls outside the scope of our platform-independent design.

4. In order to warn the user about the occurrence of a proximity event for

a certain buddy, the coordinator should retrieve the name of this buddy

from the database and present it to the user. This is represented with

the Proximity Search interaction pattern between the Coordinator and

Database, in which a findBuddyReq and findBuddyRsp message are

exchanged that contain the name of this buddy.

5. In order to warn the user about the occurrence of a proximity event the

coordinator should also synchronously retrieve from the context source

the IM status of this buddy and assures that this value is “online”. This is

represented with the Proximity Context Query interaction pattern between

the Coordinator and Context Source, in which an IMstatusReq and

IMstatusRsp message are exchanged that contain this IM status value.

6. In case the IM status value is “online” a proximity alert should be

generated for the user. This is represented with the one-way Proximity

Event Alert basic interaction pattern, in which the Coordinator generates a

proximityAlert notification message to the User Agent.

7. In case the IM status value is not “online”, no proximity alert should be

generated by the coordinator to the user agent. This is represented with

the end of the Proximity function without warning the user.

154 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

8.3 SS to SDRM Refinement Transformation

The T
SS,SDRM

 refinement transformation from service functions in terms of

interaction markers to more detailed functions in terms of interaction

patterns takes as input the service specification (SS) discussed in Section

8.1, and generates the service design refined model (SDRM) discussed in

Section 8.2.

8.3.1 Remove Buddy refinement transformation

Figure 94 shows the source model (see Figure 89) and target model (see

Figure 92) for the T
SS,SDRM

 Remove Buddy refinement transformation.

Figure 94 shows at a glance that the T
SS,SDRM

 refinement transformation

adds detail to the SDRM target model and, at the same time, preserves the

behaviour structure of the SS source model. We have defined

transformation rules in order to map choreography task elements in the SS

source model, namely our interaction markers, onto refined choreography

task elements in the SDRM target model, namely our interaction patterns.

We have also defined transformation rules in order to map the SS behaviour

structure in Figure 94, such as, for example, the sequence flow and exclusive

decision gateway elements, onto corresponding behaviour structure elements

in the SDRM target model. For the sake of readability, we do not present

the complete set of transformation rules. Figure 95 shows schematically the

mappings that we have used to define a sub-set of these transformation

rules, which we consider as the most significant for the purpose of this

thesis.

 SS TO SDRM REFINEMENT TRANSFORMATION 155

Figure 94 Source (SS)

and target (SDRM)

models for the Remove

Buddy refinement

transformation

156 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

The mappings in Figure 95 relate SS interaction markers to SDRM

interaction patterns according to the following transformation rules:

1. Transformation rule 1. Whenever a user makes a request, the user

agent, which acts on behalf of the user, should forward this request to

the coordinator. The coordinator is then responsible to perfom some

task(s) in order to fulfil the user request. In case of the removal request,

the first task of the coordinator consists of checking the information

stored in the database in order to assure that the buddy to be removed is

actually in the contact list of the user. In order to achieve this,

transformation rule 1 defines a mapping of an SS marker with name

Remove Request onto the combination of a request interaction pattern

with name Remove Request, and a search interaction pattern with name

Remove Search. The SS Remove Request marker has a removeReq message

Figure 95 Remove

Buddy: mappings for

SStoSDRM

transformation rules

definition

 SS TO SDRM REFINEMENT TRANSFORMATION 157

attached to the User participant, which is mapped onto the following

messages in the SDRM target model:

– a removeReq message attached to the User Agent participant in the

Remove Request interaction pattern

– a findRemReq message attached to the Coordinator participant in the

Remove Search interaction pattern, and

– a findRemRsp message attached to the Database participant in the

Remove Search interaction pattern.

For each choreography task element that is found in the SS source model

with:

– name Remove Request

– participants User and System, and

– message removeReq attached to the User participant,

transformation rule 1 generates two choreography task elements with:

– names Remove Request and Remove Search, respectively,

– participants User Agent/Coordinator and Coordinator/Database,

respectively, and

– messages removeReq, findRemReq, findRemRsp attached to the User

Agent, Coordinator and Database participants, respectively.

Transformation rule 1 also generates a sequence flow element to connect the

generated Remove Request and Remove Search choreography task elements

in the SDRM target model.

2. Transformation rule 2. In case the buddy requested for removal is in the

contact list of the user, the coordinator should update the user‟s contact

list in the database by removing this buddy, and inform the user about

the succesfull removal. In order to achieve this, transformation rule 2

defines a mapping of an SS marker with name Remove Acceptance onto

the combination of an update interaction pattern with name Remove

Update, and an acceptance interaction pattern with name Remove

Acceptance. The SS Remove Acceptance marker has a removeAcc message

attached to the System participant, which is mapped onto the following

messages in the SDRM target model:

– a removeBuddy message attached to the Coordinator participant in the

Remove Update interaction pattern, and

– a removeAcc message attached to the Coordinator participant in the

Remove Acceptance interaction pattern.

For each choreography task element that is found in the SS source model

with:

– name Remove Acceptance

– participants System and User, and

– message removeAcc message attached to the System participant,

transformation rule 2 generates two choreography task elements with:

158 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

– names Remove Update and Remove Acceptance, respectively

– participants Coordinator/Database and Coordinator/User Agent,

respectively, and

– messages removeBuddy and removeAcc attached to the Coordinator

participant.

Transformation rule 2 also generates a sequence flow element to connect the

generated Remove Update and Remove Acceptance choreography task

elements in the SDRM target model.

3. Transformation rule 3. In case the buddy requested for removal is not in

the contact list of the user, the coordinator should inform the user

about the impossibility of removing this buddy. In order to achieve this,

transformation rule 3 defines a mapping of an SS marker with name

Remove Rejection onto a rejection interaction pattern with name Remove

Rejection. The SS Remove Rejection marker has a removeRej message

attached to the System participant, which is mapped onto a

corresponding removeRej message attached to the Coordinator participant

in the SDRM Remove Rejection interaction pattern. For each choreography

task element that is found in the SS source model with name Remove

Rejection, participants System and User, and message removeRej message

attached to the System participant, transformation rule 3 generates a

corresponding choreography task element with name Remove Rejection,

participants Coordinator and User Agent, and message removeRej attached

to the Coordinator participant.

8.3.2 Proximity refinement transformation

Figure 96 shows the source model (see Figure 90) and target model (see

Figure 93) for the T
SS,SDRM

 Proximity refinement transformation.

Analogously to the Remove Buddy transformation, for the Proximity refined

transformation we also defined transformation rules in order to map

choreography task elements in the SS source model, namely our interaction

markers, onto refined choreography task elements in the SDRM target model,

namely our interaction patterns. Moreover, we defined transformation rules

in order to map the SS behaviour structure in Figure 96, such as, for

example, sequence flow and gateway elements, onto corresponding behaviour

structure elements in the SDRM target model. For the sake of readability,

we do not present the complete set of transformation rules. Figure 97 shows

the mappings that we have used to define a sub-set of these transformation

rules.

 SS TO SDRM REFINEMENT TRANSFORMATION 159

Figure 96 Source (SS)

and target (SDRM)

models for the Proximity

refinement

transformation

160 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

The mappings in Figure 97 relate SS interaction markers to SDRM

interaction patterns according to the following transformation rules:

1. Transformation rule 1. In order to receive proximity events the

coordinator should subscribe to the context source for those events. As

a consequence, whenever a proximity event takes place, the coordinator

should be warned by the context source. Whenever the coordinator

decides to stop receiving proximity events, it should unsubscribe to the

context source for those events. In order to acheve this, transformation

rule 1 defines a mapping of an SS marker with name proximityEvent onto

Figure 97 Proximity:

mappings for

SStoSDRM

transformation rules

definition

 SS TO SDRM REFINEMENT TRANSFORMATION 161

the combination of a subscribe interaction pattern with name Proximity

Subscribe, an unsubscribe interaction pattern with name Proximity

Unsubscribe, and a signal event interaction pattern with name

proximityChange. The SS proximityEvent marker is further mapped onto the

following messages in the SDRM target model:

– a subscribeProximity message attached to the Coordinator participant in

the Proximity Subscribe interaction pattern, and

– an unsubscribeProximity message attached to the Coordinator participant

in the Proximity Unsubscribe interaction pattern.

For each signal event element that is found in the SS source model with

name proximityEvent, transformation rule 1 generates a corresponding signal

event element with name proximityChange, and two choreography task

elements matching the following pattern:

– names Proximity Subscribe and Proximity Unsubscribe, respectively

– participants Coordinator and Context Source, and

– messages subscribeProximity and subscribeProximity attached to the

Coordinator participant.

Transformation rule 1 also generates an exclusive decision gateway element, an

event-based decision gateway element, and the sequence flow elements that

connect these gateway elements with the choreography task and signal event

elements in Figure 97.

2. Transformation rule 2. In order to warn the user about the occurrence

of a proximity event for a certain buddy, the coordinator should retrieve

the name of this buddy from the database and present it to the user.

Moreover, the coordinator should also synchronously retrieve from the

context source the IM status of this buddy and assures that this value is

“online”. In case the IM status value is “online” a proximity alert should

be generated for the user. In case the IM status value is not “online”, no

proximity alert should be generated by the coordinator to the user

agent. In order to achieve this, transformation rule 2 defines a mapping of

an SS marker with name Proximity Event Alert onto the combination of a

search interaction pattern with name Proximity Search, a context query

interaction pattern with name Proximity Context Query, and an event alert

interaction pattern with name Proximity Event Alert. The SS Proximity Event

Alert marker has a proximityAlert message attached to the System

participant, which is mapped onto the following five messages in the

SDRM target model:

– a findBuddyReq message attached to the Coordinator participant in the

Proximity Search interaction pattern

– a findBuddyRsp message attached to the Database participant in the

Proximity Search interaction pattern

162 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

– an IMstatusReq message attached to the Coordinator participant in the

Proximity Context Query interaction pattern

– a findBuddyRsp message attached to the Database participant in the

Proximity Context Query interaction pattern, and

– a proximityAlert message attached to the Coordinator participant in the

Proximity Event Alert interaction pattern.

For each choreography task element that is found in the SS source model

matching the following pattern:

– name Proximity Event Alert

– participants System and User, and

– message proximityAlert message attached to the System participant,

transformation rule 2 generates three choreography task elements with:

– names Proximity Search, Proximity Context Query and Proximity Event Alert,

respectively

– participants Coordinator/Database, Coordinator/Context Source, and

Coordinator/User Agent, respectively, and

– the five messages mentioned above.

Transformation rule 2 also generates in the SDRM model a parallel decision

gateway element, a merge gateway element, an exclusive decision gateway

element, and the sequence flow elements that connect these gateways as

depicted in Figure 97.

8.4 Service Design Component Model

The service design component model synthesises the interactions

represented in the service design refined model (see Section 8.2) in the

internal behaviour of the components involved in these interactions. In this

way, each component at the SDCM level is characterised by an internal flow

of activities that can be used for execution purposes while preserving the

interactions with the other components prescribed by the SDRM level.

Below we discuss the synthesis of the Remove Buddy and Proximity functions.

8.4.1 Remove Buddy synthesis

Figure 98 represents the Remove Buddy function as a BPMN collaboration

diagram between the User Agent, the Coordinator and the Database

components, which are represented as pools. Each of these pools contains a

Remove Buddy sub-process that describes the set of internal activities

performed within that specific component in order to fulfil the request of

removing a buddy from the buddy list of the user. We represent our SDCM

level from the perspective of the Coordinator component, since it

orchestrates the other components of our reference architecture.

 SERVICE DESIGN COMPONENT MODEL 163

Therefore, our SDCM diagram consists of an orchestration from the

perspective of the Coordinator component. The status information handled

by these components is not shown in order to avoid clogging the figure.

However, this information is the same as depicted in Figure 92.

In Figure 98 we have identified five basic executable patterns (see Section 3.2),

which are the Remove Request, Remove Search, Remove Update, Remove

Acceptance and Remove Rejection. Figure 98 represents the following

behaviour:

1. In order to remove one of the user‟s buddies from the contact list, the

user agent should inform the coordinator about the removal request.

This is represented as a Remove Request pattern, in which the User Agent

sends a removeReq message to the Coordinator with the Send Remove

Figure 98 SDCM,

Remove Buddy

164 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

Request task. This initiates the Remove Buddy sub-process of the

Coordinator, which was waiting for a message in order to start.

2. Upon the reception of the removeReq message (Receive Remove Request

task), the coordinator should retrieve the corresponding buddy‟s values

from the database in order to assure that the buddy to be removed is in

the contact list of the user. This is represented as a Remove Search

pattern, which consists of an interaction between the Coordinator and the

Database. In this interaction the Database receives a findRemReq message

(Receive Remove Search task), performs an internal operation to fulfil this

request (Remove Search Operation task), and sends a findRemRsp response

message to the Coordinator (Send Remove Search task). Depending on the

findRemRsp response, the Coordinator behaves as follows:

3. In case the findRemRsp response value is not empty (findRemRsp.b

condition), i.e., the buddy is in the contact list of the user, the

coordinator should remove this buddy as requested by the user. This is

represented as a Remove Update pattern, in which the Coordinator sends a

removeBuddy update message request to the Database (Send Remove Update

task), which receives the request (Receive Remove Update task) and

updates the data store with an internal operation (Remove Update

Operation task). A removeAcc confirmation follows (Send Remove

Acceptance task) from the Coordinator to the User Agent (Receive Remove

Acceptance task), and the Remove Buddy function ends.

4. In case the the findRemRsp response value is empty (!findRemRsp.b

condition), i.e., the buddy is not in the user‟s contact list, the

coordinator should inform the user about the impossibility of removing

this buddy. This is represented as a Remove Rejection pattern, in which

the Coordinator sends a removeRej message response (Send Rejection

Response task) to the User Agent (Receive Remove Rejection task).

5. In both cases, as indicated by the event-based gateway element in the User

Agent pool in Figure 98, the User Agent waits for a removeAcc or removeRej

message from the Coordinator, which is responsible of the acceptance or

rejection decision.

8.4.2 Proximity synthesis

Figure 99 represents the Proximity function as a BPMN collaboration diagram

between the Context Source, Coordinator, Database and User Agent components

represented as pools. Each of these pools contains a Proximity sub-process

that describes the set of internal activities performed within that specific

component for a proximity event.

 SERVICE DESIGN COMPONENT MODEL 165

In Figure 99 we have identified six basic executable patterns, which are

Proximity Subscribe, Proximity Unsubscribe, Proximity Signal Event, Proximity Search,

Proximity Context Query and Proximity Event Alert. Figure 99 shows the following

behaviour:

1. The Coordinator process initiates the Proximity function with a start event,

and evaluates whether a subscription for the proximity event has already

occurred or not depending on the value of the Subscribed control

variable (see Section 8.2.2).

2. In case subscription is necessary (!Subscribed condition), the Send

Proximity Subscribe task is performed by the Coordinator, which sends a

subscriptionRequest message to an appropriate Context Source (Receive

Proximity Subscribe task). An internal task named Proximity Subscribe

Operation is performed by this Context Source in order to realise the

subscription. As a consequence, a proximityChange signal event is thrown

by the Context Source every time a proximity situation between the user

and one of his buddies starts to hold.

Figure 99 SDCM,

Proximity

166 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

3. In case subscription has already been performed (Subscribed condition),

the Send Proximity Unsubscribe task can be performed by the Coordinator,

or, alternatively, a proximityChange signal event thrown by the Context

Source can be caught by the Coordinator. In the latter case, the Coordinator

performs the Proximity Search and Proximity Context Query tasks in parallel.

4. In the Proximity Search task, the Database receives a findBuddyReq message

(Receive Proximity Search task), performs an internal operation to fulfil

this request (Proximity Search Operation task), and sends a findBuddyRsp

message to the Coordinator (Send Proximity Search task).

5. In the Proximity Context Query task, the Context Source receives an

IMstatusReq message (Receive Proximity Context Query task), performs an

internal operation to fulfill the query (Proximity Context Query Operation

task), and returns an IMstatusRsp message to the Coordinator (Send

Proximity Context Query task) .

6. Afterwards, the Send Proximity Event Alert can be sent from the Coordinator

(Send Proximity Event Alert task) to the User Agent (Receive Proximity Event

Alert task) only in case the retrieved IM status of the buddy nearby the

user has value “online”.

8.5 SDRM to SDCM Synthesis Transformation

The T
SDRM,SDCM

 synthesis transformation from service functions in terms of

interaction patterns to more detailed functions in terms of executable

patterns takes as input the SDRM model discussed in Section 8.2, and

generates the SDCM model discussed in Section 8.4.

8.5.1 Remove Buddy synthesis transformation

Figure 100 shows the source model (see Figure 92) and target model (see

Figure 98) for the T
SDRM,SDCM

 Remove Buddy synthesis transformation. Figure

100 shows at a glance that the T
SDRM,SDCM

 transformation adds detail to the

SDCM target model in terms of the internal behaviour of the involved

participants, preserving the behaviour structure of the SDRM source model.

We have defined transformation rules in order to map choreography task

elements in the SDRM source model, i.e., interaction patterns, onto process

task elements in the SDRM target model, i.e., executable patterns. We have

also defined transformation rules in order to map the SDRM behaviour

structure in Figure 100 onto corresponding behaviour structure elements in

the SDCM target model. For the sake of readability, we do not present the

complete set of transformation rules. Figure 101 shows the mappings that

we have used to define a sub-set of these transformation rules which we

consider as the most significant for the purpose of this thesis.

 SDRM TO SDCM SYNTHESIS TRANSFORMATION 167

Figure 100 Source

(SDRM) and target

(SDCM) models for the

Remove Buddy

synthesis transformation

168 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

Figure 101 Remove

Buddy: mappings for

SDRMtoSDCM

transformation rules

definition

 SDRM TO SDCM SYNTHESIS TRANSFORMATION 169

The mappings in Figure 101 relate SDRM interaction patterns to SDCM

executable patterns as follows:

1. Transformation rule 1. Whenever a user makes a request, the user

agent, which acts on behalf of the user, should forward this request to

the coordinator. The coordinator is then responsible to perfom some

task(s) in order to fulfil the user request. In case of the removal request,

the first task of the coordinator consists of checking the information

stored in the database in order to assure that the buddy to be removed is

actually in the contact list of the user. In order to achieve this,

transformation rule 1 defines a mapping of the following SDRM

interaction patterns:

– an SDRM request with name Remove Request and

– an SDRM search with name Remove Search,

onto the following SDCM executable patterns:

– the sequence of a Send Remove Request process task element in the User

Agent pool and a Receive Remove Request process task in the Coordinator

pool, and

– the sequence of a Remove Search process task element in the Coordinator

pool, a Receive Remove Search process task element in the Database pool, a

Remove Search Operation process task element in the Database pool, and a

Send Remove Search process task element in the Database pool.

The following messages in the SDRM source model are mapped onto

equivalent messages in the SDCM target model:

– the removeReq message attached to the User Agent participant in the

Remove Request interaction pattern,

– the findRemReq message attached to the Coordinator participant in the

Remove Search interaction pattern, and

– the findRemRsp message attached to the Database participant in the

Remove Search interaction pattern.

Transformation rule 1 generates the SDCM elements mentioned above

whenever two choreography task elements are found in the SDRM source

model matching the following pattern:

– names Remove Request and Remove Search, respectively

– participants User Agent/Coordinator and Coordinator/Database, respectively,

and

– messages removeReq, findRemReq, findRemRsp attached to the User Agent,

Coordinator and Database participants, respectively.

Transformation rule 1 also generates the sequence flow elements as depicted in

Figure 101 in order to connect the generated process task elements in the

SDCM target model.

170 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

2. Transformation rule 2. In case the buddy requested for removal is in

the contact list of the user, the coordinator should update the user‟s

contact list in the database by removing this buddy, and inform the user

about the succesfull removal. In order to achieve this, transformation rule

2 defines a mapping of the following SDRM interaction patterns:

– an SDRM update with name Remove Update and

– an SDRM acceptance with name Remove Acceptance,

onto the following SDCM executable patterns:

– the sequence of a Remove Update process task element in the Coordinator

pool, a Receive Remove Update process task element in the Database pool,

and a Remove Update Operation process task element in the Database pool,

and

– the sequence of a Send Remove Acceptance process task element in the

Coordinator pool, and a Receive Remove Acceptance process task in the User

Agent pool.

The following messages in the SDRM source model are mapped onto

equivalent messages in the SDCM target model:

– the removeBuddy message attached to the Coordinator participant in the

Remove Update interaction pattern, and

– the removeAcc message attached to the Coordinator participant in the

Remove Acceptance interaction pattern.

Transformation rule 2 generates the SDCM elements mentioned above

whenever two choreography task elements are found in the SDRM source

model matching the following pattern:

– names Remove Update and Remove Acceptance, respectively

– participants Coordinator/Database and Coordinator/User Agent, respectively,

and

– messages removeBuddy and removeAcc attached to the Coordinator

participant, respectively.

Transformation rule 2 also generates the sequence flow elements as depicted in

Figure 101 in order to connect the generated process task elements in the

SDCM target model.

3. Transformation rule 3. In case the buddy requested for removal is not in

the contact list of the user, the coordinator should inform the user

about the impossibility of removing this buddy. In order to achieve this,

transformation rule 3 defines a mapping of an SDRM rejection interaction

pattern with name Remove Rejection onto a corresponding SDCM

executable pattern with name Remove Rejection. The SDRM Remove

Rejection interaction pattern has a removeRej message attached to the

Coordinator participant, which is mapped onto a corresponding removeRej

message between the Coordinator and User Agent pools in the SDCM

Remove Rejection executable pattern. For each choreography task element

 SDRM TO SDCM SYNTHESIS TRANSFORMATION 171

that is found in the SDRM source model matching the following

pattern:

– name Remove Rejection

– participants Coordinator and User Agent, and

– message removeRej message attached to the Coordinator participant,

transformation rule 3 generates two corresponding process task elements with:

– names Send Remove Rejection and Receive Remove Rejection, respectively

– pools Coordinator and User Agent, and

– message removeRej between the Coordinator and User Agent pools.

8.5.2 Proximity synthesis transformation

Figure 102 shows the source model (see Figure 93) and target model (see

Figure 99) for the T
SDRM,SDCM

 Proximity synthesis transformation. Figure 102

shows at a glance that the Proximity T
SDRM,SDCM

 transformation adds detail to

the SDCM target model in terms of the internal behaviour of the involved

participants and, at the same time, preserves the behaviour structure of the

SDRM source model. We have defined transformation rules in order to

map choreography task elements in the SDRM source model, namely our

interaction patterns, onto process task elements in the SDRM target model,

namely our executable patterns. We have also defined transformation rules

in order to map the SDRM behaviour structure in Figure 102, such as, for

example, sequence flow and exclusive decision gateway elements, onto

corresponding behaviour structure elements in the SDCM target model.

For the sake of readability, we do not present the complete set of

transformation rules. Figure 103 shows the mappings that we have used to

define a sub-set of these transformation rules, which we consider the most

significant for the purpose of this thesis.

172 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

Figure 102 Source

(SDRM) and target

(SDCM) models for the

Proximity synthesis

transformation

 DISCUSSION 173

Since we assume that the mappings shown in Figure 103 are similar to the

mappings we have used to define the transformation rules presented so far

in this chapter, we refrain from explaining these mappings.

8.6 Discussion

In this chapter, we have used BPMN to represent the source and target

models for the refinement and synthesis transformations at the PIM level of

our methodology. We implemented these transformations using the ATL

transformation language. We did not discuss ATL transformation rules and

language-specific constructs, but we introduced and justified in a language-

Figure 103 Proximity:

mappings for

SDRMtoSDCM

transformation rules

definition

174 CHAPTER 8 BEHAVIOUR REFINEMENT AND SYNTHESIS USING BPMN

independent way the mappings that we have used to implement these

transformations.

The BPMN notation used in this chapter provided us with the

expressiveness necessary to create three levels of behaviour models, namely

SS, SDRM and SDCM levels. Although BPMN required a steep learning

curve, this was balanced by the benefit of using only one language

throughout the entire PIM design process. In this way, we had to handle

only the BPMN metamodel when implementing the refinement and

synthesis transformations, since all the SS, SDRM and SDCM models

conform to the same metamodel. The mechanisms to collapse modelling

elements provided by BPMN, such as collapsed sub-choreographies and

sub-processes, helped us in mastering model size when the examples

became more complex. Moreover, BPMN was suitable to represent our

basic patterns of behaviours, and also the combinations of these basic

patterns in more complex behaviours (composite patterns). Finally, since

BPMN is widely adopted both in academia and industry, the use of this

notation can be beneficial to make our methodology available to more

people.

The availability of an Ecore version of the BPMN metamodel allowed us

to define transformation rules in ATL for our SStoSDRM refinement and

SDRMtoSDCM synthesis transformations and exectute these rules in an

Eclipse-based envioronment using the ATL engine. The Eclipse

environment has been our favorite choice as development platform, since it

is an integrated environment in which we could both edit our BPMN

models and realise our transformations either with the ATL engine or,

alternatively, the medini QVT engine (see Section 6.4). However, we

encountered some practical problems concerning Eclipse-based tool

support for BPMN. The current version BPMN 2.0 is not supported yet by

all currently available BPMN tools. For example, at the moment of writing,

the BPMN modeller for the Eclipse platform was available only for BPMN

version 1.2. Therefore, we used the Signavio/Oryx editor [134] to create

the BPMN models presented in this thesis and exported these models to

the Eclipse environment in order to use them as source and target models

for the ATL transformation engine. The Signavio/Oryx editor is a process

modelling platform that supports BPMN 2.0 and is freely available for

academic use.

Chapter

9

9. Case Study

This chapter presents a case study that applies the PIM behaviour

refinement and synthesis transformations implemented in Chapters 6 to 8

to the realisation of a running prototype at the PSM level that uses BPEL,

UDDI and web services as target technology.

This chapter is organised as follows: Section 9.1 gives an overview of the

case study, which realise the contact buddy function of the Live Contacts

application, Section 9.2 presents our PIM behaviour models, namely service

specification (SS), service design refined model (SDRM) and service design component

model (SDCM), Section 9.3 discusses a platform-specific framework in which

components of our reference architecture are mapped onto BPEL, UDDI

and web services target technologies, Section 9.4 presents a PSM prototype

that implements the PIM design using this framework, Section 9.5 discusses

the PIMtoPSM transformation focusing on the coordinator component of

our reference architecture, and, finally, Section 9.6 discusses the lesson

learned with this case study.

9.1 Overview

In order to demonstrate that our PIM behaviour refinements can be applied

to generate implementations at the PSM level, i.e., the applicability of our

approach by means of a running application, we considered the following

scenario based on the contact buddy function of the Live Contacts

application:

“A user wants to contact one of his buddies with a specific communication means, such

as SMS, Phone, Chat or E-mail. Therefore, the user provides the application with the

name of this buddy and the communication means to be used. In order to fulfil the

user request, the coordinator has to retrieve the contact details of the buddy from the

buddy list of the user in the database, and discover a proper service in the service trader

176 CHAPTER 9 CASE STUDY

according to the desired communication means. Once the coordinator has retrieved

contact details of the buddy and the endpoint location of the communication service, it

can forward this information to the user agent, which is finally able to invoke the

proper service and put the user in communication with the desired buddy”.

The case study starts modelling this scenario at the PIM level. In principle,

any of the three solutions for PIM behaviour modelling and transformations

proposed in Chapters 6, 7 and 8, respectively, could be used to model and

realise these PIM transformations. Due to space limitations, we have chosen

to show only the BPMN solution employed in Chapter 8, since BPMN is

the most popular language among the proposed ones. The case study

continues with the selection of the technology that we have chosen to

realise our PSM design and the implementation of a prototype. Figure 104

shows an overview of the case study.

9.2 PIM Design

This Section presents the models M
1
, M

2
 and M

3
 shown in Figure 104. The

model M
1
 should be created by the application designer in collaboration

with the user using interaction markers (see Section 3.5). The models M
2

Figure 104 Case study

overview

 PIM DESIGN 177

and M
3
 can be automatically generated executing the transformations T

1

and T
2
 implemented in Chapter 8.

9.2.1 Service Specification

In the service specification phase of the design, we aim at composing the

behaviour of the application under development by using interaction markers

as placeholders for more concrete interactions at lower abstraction levels.

Figure 105 shows the service specification for the Contact Buddy function that

is used in the Live Contacts application (see Section 6.1) when a user wants

to contact one of his buddies with a specific communication means, such as

SMS, Phone, Chat or E-mail. In order to establish this contact, the user

should provide the system with the name of this buddy and the

communication means to be used (contactReq message). As a consequence,

the system reacts by opening the desired communication channel.

Figure 105 Contact

buddy, SS

178 CHAPTER 9 CASE STUDY

9.2.2 Service Design Refined Model

Figure 106 shows the service design refined model that refines the Contact

Buddy function in Figure 105 into a more concrete behaviour in terms of

basic interaction patterns. The Contact Buddy function involves some

components of our reference architecture, namely the user agent, the

coordinator, the database, the service trader, and some action providers,

which are the SMS, Phone, Chat and E-mail services.

Figure 106 Contact

buddy, SDRM

 PIM DESIGN 179

Figure 106 shows that the Contact Buddy function starts with a Contact Request

from the User Agent to the Coordinator, which we classified as a (one-way)

request basic interaction pattern. A Contact Search task follows, in which the

Coordinator sends a findContactReq message to the Database and receives back

a findContactRsp message. We classified this task as a (two-way) search basic

interaction pattern. After the Contact Search pattern, the Coordinator selects

the proper communication channel according to the user preferences. The

details of the SMS Service are shown in Figure 107.

Figure 107 shows the following behaviour:

– in case the SMS Service is selected, the tasks SMS Service Search and SMS

Service Discover are performed in parallel. These tasks correspond to our

search and discover basic interaction patterns, respectively.

– In the SMS Service Search interaction pattern the Coordinator retrieves the

SMS number of the contact from the Database with the findSmsNrReq and

findSmsNrReq message exchange.

– In the SMS Service Discover pattern the Coordinator sends a

discoverSmsServiceReq message to the Service Trader to indicate the service

type to discover, namely “sms” in the given example, and the Service

Trader returns the endpoint location of this service using a

discoverSmsServiceRsp message.

Figure 107 SMS

service, SDRM

180 CHAPTER 9 CASE STUDY

– Once both the service discovery and the database retrieval are

concluded, the Coordinator sends an SMS Service Response to the User

Agent using an smsServiceRsp message that contains the information

necessary to invoke the SMS service, i.e., the contact details of the

buddy and the endpoint location of the service. This task corresponds to

a response basic interaction pattern. In this way, the User Agent is able to

invoke the Sms Action Provider and provide it with the necessary input,

which is the mobile number to which the SMS message should be sent.

This is represented by the Sms Service Invoke task, which we have

classified as an invoke basic interaction pattern. We assume that any

further information, such as the text of the SMS, should be provided

directly by the user to the action provider, since this is part of the

detailed behaviour of the action provider components, which is out of

the scope of this thesis.

9.2.3 Service Design Component Model

Figure 108 shows the service design component model that synthesises the

Contact Buddy function depicted in Figure 106 and Figure 107 into a more

concrete function in terms of basic executable patterns. This model represents

the executable behaviour of the coordinator component and its

collaboration with the other components involved in the Contact Buddy

function. These components are represented by pools in Figure 108 and

each of these pools contains a Contact Buddy sub-process instance. In order

to simplify the model without loss of clarity, we only show in Figure 108 the

option in which the Coordinator has selected “sms” as preferred

communication means.

 PIM DESIGN 181

Figure 108 shows the following behaviour:

– the User Agent process initiates the Contact Buddy function with a start

event. This is followed by a Send Contact Request task, in which the User

Agent sends a contactReq message to the Coordinator. This initiates the

Remove Buddy sub-process of the Coordinator, which is waiting for a

message in order to start.

Figure 108 Contact

buddy, SDCM

182 CHAPTER 9 CASE STUDY

– Upon the reception of the contactReq message (Receive Contact Request

task), the Coordinator performs a Contact Search task, which consists of

retrieving the buddy to be called from the Database. In order to achieve

this, the Database receives a findContactReq message from the Coordinator

(Receive Contact Search task), performs an internal operation in order to

get the expected buddy (Contact Search Operation task) and sends the

response back to the Coordinator (Send Contact Search task) with a

findContactRsp message.

– Afterwards, the Coordinator evaluates the value of the contact means

previously provided by the User Agent in the contactReq message. Since

we assume in the given example that this value is “sms”, the Coordinator

performs an SMS Service Discover task, which consists of retrieving the

endpoint location of an SMS service from the Service Trader with the

discoverSmsServiceReq and discoverSmsServiceRsp message exchange. In

order to achieve this, the Service Trader receives the

discoverSmsServiceReq message (Receive Sms ServiceDiscover task),

performs an internal operation in order to discover the expected service

(Sms Service Discover Operation task) and sends the discoverSmsServiceRsp

message back to the Coordinator (Send Sms Service Discover task).

– Concurrently to this SMS Service Discover task, the Coordinator performs

the SMS Service Search task, which consists of retrieving the phone

number of the buddy to be called from the Database with the

findSmsNrReq and findSmsNrRsp message exchange.

– Once both the endpoint location of an appropriate SMS service

(discoverSmsServiceRsp message) and the phone number to contact the

buddy (findSmsNrRsp message) are available, an smsServiceRsp message

follows (Send Sms Service Response task) from the Coordinator to the User

Agent (Receive Sms Service Response task).

– The User Agent uses the service endpoint information contained in the

smsServiceRsp message to invoke the SMS Action Provider (Send Sms Service

Invoke task). The SMS Action Provider receives the buddy phone number in

the smsServiceReq message (Receive Sms Service Invoke task). Since we

assume that any further information, such as the text of the SMS

message, should be provided directly by the user to the SMS Action

Provider, the Contact Buddy function in Figure 108 ends with the Action

Execution task performed by the SMS Action Provider.

We consider the SDCM model in Figure 108 as the final artefact of our PIM

level design. This model has in principle enough technical details for

simulation, but technical information for deployment is still missing.

Therefore, this SDCM model should be used as input for the PSM design

and completed with the missing information before it can be deployed on

some execution engine.

 TECHNOLOGY SELECTION AND PSM DESIGN 183

9.3 Technology Selection and PSM Design

In order to realise a PSM prototype that implements the scenario in Section

9.1, we have first designed a platform-specific framework in which

components of our reference architecture are mapped onto target

technologies. The same framework can be used with different scenarios.

This framework is based on the Service-Oriented Architecture principles

described in Section 2.2. We realised the coordinator as a BPEL process

exposed as a web service to all the other components of the architecture.

These components provide and possibly use services that are orchestrated

by the coordinator BPEL process. Figure 109 shows the framework.

considered in the PSM design.

RequestInputs

User Agent

Coordinator CLIENT

SMS
service
CLIENT

Phone
service
CLIENT

Email
service
CLIENT

Chat
service
CLIENT

RequestOutputs

Coordinator

BPEL process
Database

web service

Service Trader

jUDDI Registry

Discovery
web service

Service descriptions

Action Providers

SMS web service

Phone web service

Email web service

Chat web service

Publication
web service

services have descriptions

Ontology

semantic concepts
described in

based on semantic
concepts of

service invocation

service invocation

service invocation

service invocation

RequestInputs

User Agent

Coordinator CLIENT

SMS
service
CLIENT

Phone
service
CLIENT

Email
service
CLIENT

Chat
service
CLIENT

RequestOutputs

Coordinator

BPEL process
Database

web service

Service Trader

jUDDI Registry

Discovery
web service
Discovery

web service
Service descriptionsService descriptions

Action Providers

SMS web service

Phone web service

Email web service

Chat web service

Publication
web service
Publication
web service

services have descriptions

Ontology

semantic concepts
described in

based on semantic
concepts of

service invocation

service invocation

service invocation

service invocation

Figure 109 shows that the Coordinator BPEL process receives some inputs

(RequestInputs) from a Coordinator client that should be implemented in the

User Agent. These inputs instantiate a new Coordinator BPEL process. In our

contact buddy prototype, the inputs are the name of the buddy and the

preferred communication means to contact this buddy. In order to put the

user in contact with his buddy, the Coordinator BPEL process has to retrieve

information from the Database component, which is exposed in the

framework as a web service (Database web service). The Coordinator BPEL

process also needs to discover a suitable service in the Service Trader to

provide the communication means selected by the user.

We realised the service trader as a UDDI registry using jUDDI [135],

which is a Java implementation of the UDDI standard. Our jUDDI registry

stores the descriptions of the services available in the framework. In our

prototype, the available services are SMS, Phone, E-mail and Chat services.

The service descriptions consist of XML documents with the name, type and

Figure 109 Platform-

specific design

framework

184 CHAPTER 9 CASE STUDY

endpoint of the service. The service type refers to semantic concepts described

in an ontology supported by our framework. This ontology is based on the

context model that we have defined at the PIM level of our methodology

(see Section 6.1.2). The endpoint is the concrete address where the service is

deployed. Figure 110 shows an example of service description for the SMS

service. To support the publication of service descriptions in this format,

we have extended jUDDI with tModels that represent each of the service

parameters, i.e., name, type and endpoint. To group the name, type and

endpoint tModels under the same service, we have used the categoryBag UDDI

element.

Service descriptions are published in our jUDDI registry through the

Publication web service depicted in Figure 109, which offers a publication

interface to the service developers. This interface accepts a service

description, parses this description and publishes the service name, type and

endpoint in the jUDDI registry.

The Coordinator BPEL process can discover the services published in the

jUDDI registry through the Discovery web service depicted in Figure 109. The

discovery is based on the service type semantic concept used in the service

descriptions. The discovery mechanism retrieves all the services with a type

semantically related to the requested type. For example, assume that we are

looking for the service type FixedPhoneService, which is a semantic concept

as shown in the excerpt of the framework ontology depicted in Figure 111.

Figure 110 SMS

service description

 TECHNOLOGY SELECTION AND PSM DESIGN 185

The discovery mechanism retrieves the following matches, which are

semantically related to the requested type:

1. FixedPhoneService  PhoneService (FixedPhoneService is a subsume match of

PhoneService);

2. FixedPhoneService WorkPhone (FixedPhoneService is a plug in match of

WorkPhone);

3. FixedPhoneService  HomePhone (FixedPhoneService is a plug in match of

HomePhone);

4. FixedPhoneService ≡ FixedPhoneService (FixedPhoneService is an exact match

of FixedPhoneService).

The discovery mechanism selects the best match among the options above.

The best match is the exact match, followed by the plug in matches and then

by the subsume match. The Discovery web service in Figure 109 returns the

endpoint of the best match to the Coordinator BPEL process. We realised the

publication and discovery mechanisms as web services, so that they are

eventually accessible from any component of the framework. The

publication and discovery mechanisms are based on [136]. The Coordinator

BPEL process finishes once the service endpoint has been discovered in the

jUDDI registry and the contact details of the buddy have been retrieved

from the Database. Endpoint and contact details are given as output

(RequestOutputs) to the Coordinator client located in the User Agent. Figure 109

Figure 111 Framework

ontology excerpt

186 CHAPTER 9 CASE STUDY

shows that the User Agent also contains the clients to invoke the SMS,

Phone, E-mail and Chat services (one client for each service). These are

generic clients for the services, i.e., they do not have a specific service

endpoint. Once it obtains the endpoint, the User Agent can finally invoke the

proper communication service (service invocation) by giving the contact

details of the buddy. This should put the user in contact with his buddy via

the desired communication channel.

9.4 Implementation

Figure 112 shows the BPEL process that implements the coordinator, which

orchestrates the components of our platform-specific framework. We

manually designed this process by using the SDCM in Figure 108 as source

model. The automation of the transformation from PIM to PSM

(transformation T
3
 in Figure 104) is out of the scope of this thesis, but has

been addressed in [124].

Figure 112 Platform-

Specific design model

(PSM): the coordinator

BPEL process

 PIM TO PSM TRANSFORMATION 187

The BPEL process in Figure 112 starts with a receive activity with name

ReceiveContactRequest that accepts as inputs the name of the buddy and the

communication means to contact this buddy. The assign activity

contactReqTOfindContactReq copies the name of the buddy contained in the

contactReq message of the RemoveReceiveRequest activity to the findContactReq

message attached to the invoke activity called ContactSearch. The invoke

activity invokes the database web service in order to retrieve the

information associated to the considered buddy. The BPEL process in Figure

112 continues in two alternative flows, for either “SMS” or “WorkPhone” as

selected communication means, respectively. We did not consider the other

communication means in Figure 112, since their flow of activities is

analogous to these two options. These flows execute two invoke activities in

parallel named SmsServiceSearch and SmsServiceDiscover. The

SmsServiceSearch activity invokes the database service to retrieve the contact

details of the buddy, and the SmsServiceDiscover activity invokes the

discovery web service to discover the endpoint of the service. When both

invoke activities in the flow have been performed, their output is assigned to

the reply activity with name SendSmsServiceResponse, which ends the BPEL

process. The SendSmsServiceResponse activity sends the outputs of the

process to the coordinator client in the user agent.

9.5 PIM to PSM Transformation

Figure 113 shows possible source and target models for our PIM to PSM

transformation. The source model consists of the SDCM model in Figure

108, where only the internal details of the coordinator component and its

collaboration with the other components are shown, since these details are

relevant for the realisation of the coordinator BPEL process at the PSM

level. The target model consists of the BPEL process shown in Figure 112.

This PIM to PSM transformation could in principle be obtained in

consecutive refinements, similarly to our refinements at the PIM level.

However, in this thesis we assume that the PSM is obtained with only one

transformation step.

188 CHAPTER 9 CASE STUDY

Figure 113 PIM to PSM

transformation: source

and target models

 PIM TO PSM TRANSFORMATION 189

Although the complete automation of the PIM to PSM transformation in

Figure 113 is out of the scope of this thesis, we provide in Figure 114 to

Figure 120 mappings that can be used to automate this transformation using

SDCM executable patterns at the PIM level and implementation patterns at

the PSM level (see Section 3.2).

Figure 114 shows the mapping of a one-way request executable pattern called

Contact Request between the participants User Agent and Coordinator that

exchange a contactReq message, onto a corresponding receive BPEL activity

named ReceiveContactRequest and input message contactReq.

Figure 114 Contact

Request pattern

Figure 115 Assignment

of contactReq input

message to

findContactReq output

message

190 CHAPTER 9 CASE STUDY

Figure 115 shows the assignment of the contactReq message of the

ReceiveContactRequest receive activity shown in Figure 114 as input value for

the ContactSearch invoke activity discussed in the following mapping.

Figure 116 shows the mapping of a two-way search executable pattern called

Contact Search between the participants Coordinator and Database that

exchange the findContactReq and findContactRsp messages, onto a

corresponding invoke BPEL activity named ContactSearch that sends a

findContactReq request to the database and receives back a findContactRsp

response.

Figure 117 shows the mapping of a two-way search executable pattern called

SMS Service Search that involves the participants Coordinator and Database,

which exchange the findSmsNrReq and findSmsNRsp messages. The SMS

Figure 116 Contact

Search pattern

Figure 117 SMS

Service Search pattern

 PIM TO PSM TRANSFORMATION 191

Service Search executable pattern is mapped onto a corresponding invoke

BPEL activity named SMSServiceSearch that sends a findSmsNrReq request to

the database and receives back a findSmsNRsp response.

Figure 118 shows the mapping of a two-way discover executable pattern

called SMS Service Search between the participants Coordinator and Service

Trader that exchange the discoverSmsServiceReq and discoverSmsServiceRsp

messages, onto a corresponding invoke BPEL activity named

SMSServiceSearch that sends a discoverSmsServiceReq request to the service

trader and receives back a discoverSmsServiceRsp response.

Figure 119 shows the mapping of a one-way response executable pattern

called SMS Service Response between the participants Coordinator and User

Agent that exchange an smsServiceRsp message, onto a corresponding reply

BPEL activity named SendSMSServiceResponse and a variable smsServiceRsp.

Figure 118 SMS

Service Discover pattern

Figure 119 SMS

Service Response

pattern

192 CHAPTER 9 CASE STUDY

Figure 120 shows the assignment of the output of the SmsServiceSearch and

SmsServiceDiscover invoke activities shown in Figure 117 and Figure 118,

respectively, to the input value of the SendSMSServiceResponse reply activity

shown in Figure 119.

9.6 Discussion

In this chapter we have provided a case study that covers all the

development steps prescribed by our methodology, including the realisation

of a running prototype. This case study started with a service specification

(SS) represented as a BPMN choreography diagram (see Figure 105), in

which we identified interaction markers as placeholders for refined

interactions at lower abstraction levels. This SS has been then given as input

to our prototype SStoSDRM refinement transformation (see Section 8.3), which

automatically generated a service design refined model (SDRM) represented

as a more detailed BPMN choreography. This SDRM model is composed by

interaction patterns that replaced the interaction markers used at the SS level

to mark abstract interactions. The SDRM model has been given as input to

a second transformation, namely our prototype SDRMtoSDCM synthesis

transformation (see Section 8.5), which automatically generated a service

design component model represented as a BPMN collaboration diagram.

This SDCM model is composed by executable patterns that synthesized an

internal behaviour for the corresponding interaction patterns used at the

SDRM level. The SS, SDRM and SDCM models in BPMN can be

Figure 120 Assignment

of input messages to

smsServiceRsp output

message

 DISCUSSION 193

alternatively modelled and transformed using A-MUSE DSL and ISDL, as

we have done in Chapter 6, or using transition systems, as we have done in

Chapter 7. Independently on the specific technique used to generate the

SDCM model, we have used this model as input to realise a BPEL process

for the coordinator component of our architecture. This BPEL process

interacts with the other components of the reference architecture, which

are realised as web services in our prototype, by means of the services that

these components make available in a UDDI registry according to the SOA

paradigm. The PIMtoPSM transformation from BPMN to BPEL process

models translates a platform-independent model that can be in principle

realised with any middleware target platform that supports service

invocations, to a platform-specific model that depends on the specific

technology chosen as target platform. Since this PIMtoPSM transformation is

not the focus of this thesis, we have manually designed it for the proposed

prototype for demonstration purposes. However, mappings from BPMN to

BPEL are available in the literature [124].

The prototype presented in this chapter is one of the possible

realisations of our service design component model with some target

technologies. Other technologies than BPEL, UDDI and web services can

be used. With this prototype, we showed that our methodology can be

applied to generate running implementations. We did not consider here

actual concrete context source components that retrieve context

information from the user environment and generate context events in case

of context changes. The integration of these components in our reference

architecture using a context expression evaluator is discussed in [131].

However, we envision an integration of these components with web services

technologies. By implementing the action providers as web services, we

learned that this is a suitable solution to obtain flexibility, interoperability

and portability in our platform-specific framework. Further study needs to

be performed in order to integrate context source components in the

framework and expose them as web services. These components require

mechanisms to allow the coordinator to dynamically subscribe to context

events as soon as these components become available to the application.

However, we believe that our experiments with action providers as web

services reported in this thesis have brought us a step forward towards the

usage of context sources with this technology.

Chapter

10

10. Conclusions

This chapter presents the conclusions of this thesis and identifies topics that

we recommend for future research. This chapter is further structured as

follows: Section 10.1 presents some general remarks on our research,

Sections 10.2 to 10.5 discuss the most important contributions of this

work, and, finally, Section 10.6 presents directions for future research.

10.1 General Remarks

In today‟s market of service offerings, service providers not only have to

create services that are innovative and distinctive in order to retain and

attract demanding users, but also have to introduce these services quickly

and effectively to remain competitive in their business. Therefore, a service

development process that is agile, intuitively appealing to use, automated,

and reusable has emerged as an important and desirable feature for service

providers. In this thesis we have defined methodological support for such a

development process.

We have provided a layered methodology based on behaviour modelling

and transformations for the development of context-aware mobile

applications, which are distributed applications that can provide innovative

and distinctive services to their users. We have used currently available

approaches, such as Service-Oriented Architecture (SOA) and Model-

Driven Architecture (MDA), to support our methodology. SOA provided us

with the architectural discipline necessary to define a reference architecture

for context-aware mobile applications in which components interoperate

using each other‟s services, abstracting from irrelevant implementation

details. MDA provided us with the necessary design concepts and

principles, such as, for example, the separation of platform-independent

(PIM) and platform-specific models (PSM) concerns, the systematic (re)use

of models, and the (automatic) use of model transformations. We have used

196 CHAPTER 10 CONCLUSIONS

these principles to progress the state-of-the-art in model-driven

development of context-aware mobile applications by taking into account

the behaviour of these applications already in early stages of the

development process. In order to achieve this, in our methodology we have

refined the application behaviour in several steps, from abstract

specifications to final implementations. We have realised automated model

transformations throughout these refinement steps to generate executable

models and we have reasoned about their behavioural correctness.

The main contributions of this thesis can be summarised as follows:

– provide a layered methodology for behaviour modelling,

– promote proper communication between stakeholders,

– provide architectural support for context-aware mobile applications,

– develop automated support for behaviour model transformations.

The following sections discuss these contributions.

10.2 Layered Methodology for Behaviour Modelling

By developing the layered methodology for behaviour modelling proposed

in this thesis, we have provided the following contributions.

Progress in state-of-the-art of model-driven development

According to model-driven development principles, in Chapters 2 and 3 we

have prescribed the use of models as main artefacts of the development

process and motivated the use of model transformations to refine the

application behaviour from abstract specifications towards implementation.

We argued that model-driven development has often focused on structural

aspects, giving less attention to the behaviour of the application under

development. This thesis contributed to the state-of-the-art in model-

driven development by incorporating both the behaviour and the structure

of the application under development in early stages of the development

process, namely at the PIM level. In this way, the PIM level can be already

used for behaviour analysis and simulation purposes, as opposed to the

practise of dealing with these aspects at the end of the development

process.

We also argued that the gap to be bridged by a PIM design is too big to

be realised only in one step and more abstraction levels are necessary. A

PIM design with only one abstraction level would bring either to a model

with insufficient technical details for implementation, but understandable

by humans, or to a model with all the necessary technical details, but hard

to understand by humans. Therefore, we have divided the PIM design in

several behavioural refinements that incrementally add technical details

 LAYERED METHODOLOGY FOR BEHAVIOUR MODELLING 197

towards specific implementations by preserving the correctness of the

original application behaviour. In order to demonstrate the novelty and

general applicability of this contribution, in Chapter 4 we have presented a

survey on techniques in model-driven behaviour modelling development

that are relevant to this thesis, and classified these techniques according to

our PIM behavioural refinements. We argued that none of these techniques

can cover all these refinements. In Chapter 5 we have further compared

these techniques according to qualitative criteria that are relevant in a

methodology that aims at optimizing time, costs and efforts of the service

development process. We do not claim that these qualitative criteria are

ideal and complete, but they have been suitable for the purpose of our

comparison. Based on this comparison, we have proposed three model-

driven solutions that we used to implement our PIM behavioural

refinement steps in Chapters 6, 7 and 8, respectively.

Language-independence

In Chapter 5, we claimed that our methodology is language-independent

and can be used with different modelling languages as long as the chosen

language allows us to properly model the behaviour of the application under

development. This claim is justified in Chapters 6 to 8, in which we

proposed three solutions that realise a running example employing different

languages. The first solution (see Chapter 6) uses the A-MUSE domain-

specific language and ISDL. The second solution (see Chapter 7) elaborates

on an alternative that uses the formalism of Transition Systems. The third

solution (see Chapter 8) proposes the usage of the BPMN notation.

Although we used only this third solution in the case study presented in

Chapter 9 due to space limitations, the other two solutions would also be

suitable for this purpose.

Applicability

When designing an application, the separation of concerns principle

promoted by the model-driven development prescribes that the application

logic should be separated from the specific technology used to realise this

application. Therefore, we have separated the design activities of our

methodology in platform-independent design, which deals with application

logic aspects, and platform-specific design, which is related to specific

technological choices. While in Chapers 6 to 8 we have focused on the

platform-independent design and its decomposition in behavioural

refinements, in Chapter 9 we have applied these PIM behavioural

refinements to generate a running prototype at the platform-specific level.

The technology we have used at the PSM level consists of a BPEL process

deployed in an BPEL execution engine, the web services invoked by this

198 CHAPTER 10 CONCLUSIONS

BPEL process, and a jUDDI registry in which these services are registered

and can be discovered by the BPEL process.

Behaviour correctness

We have defined behaviour model transformations that incrementally add

technical details towards specific implementations. We have defined these

model transformations to be correct by construction, i.e., we have created

transformation rules that generate refined target models that preserve the

original behaviour specified in the source model. In order to achieve this,

we have initially designed by hand the source and target models for these

transformations, and, afterwards, defined transformations rules between

these models and automated them. When executing these automated

transformations, we reasoned about the correctness of the generated target

model by simply comparing it against the corresponding model specified by

hand. However, we can extend our reasoning by using formalism to

perform automated behaviour ananlysis of the generated models. Therefore,

in Chapter 4 we investigated techniques for behaviour analysis that can be

used to verify automatically behaviour correctness at different abstraction

levels, and also the absence of undesirable behaviour, such as, for example,

deadlocks, in the generated models. These techniques can also be used to

assess the fulfillment of logical properties in order to validate the generated

behaviour of an application against the user requirements. In Chapter 5, we

have pointed out how some of these techniques can be integrated in our

methodology. In Chapter 7, we have experimented with one of these

techniques, which is based on transition systems formalisms.

10.3 Proper Communication between Stakeholders

We have used models as a means to promote common understanding

between the stakeholders involved in the different phases of the

development process. These models should be expressed in a language with

a well-defined syntax and a formal semantics in order to avoid ambiguities

and consequent misinterpretations. However, even with such models,

proper communication between stakeholders cannot always be guaranteed

due to their different background and skills. Every model has a purpose and

models used by different stakeholders (can) have different purposes. For

example, business experts would probably not understand a behavioural

model expressed in some mathematical formalism or programming

language, and, vice-versa, an IT developer would not be familiar with

business models that describe how to create, deliver and capture value for

an organization. Therefore, our contribution towards a proper

communication between stakeholders consists of a (partially automated)

 ARCHITECTURAL SUPPORT FOR CONTEXT-AWARE MOBILE APPLICATIONS 199

methodology with different abstraction levels that allows each stakeholder

to address the (same) development process at the most appropriate

abstraction level, namely a higher abstraction level for business experts and

a lower abstraction level for technical developers.

10.4 Architectural Support for Context-Aware Mobile

Applications

An important challenge to be competitive in today‟s market of service

offerings consists of providing the users with innovative, distinctive and

user-centric services. Context-aware applications can offer services that are

(1) personalised according to user preferences and history, (2) ubiquitous to be

accessible wherever the users are and whatever activity they are doing, (3)

mobile to serve users continuously connected to the Internet with their

mobile devices, and (4) composable to facilitate the user experience.

Therefore, we have tailored the methodology proposed in this thesis to

context-aware mobile applications and provided the contributions

discussed below to give architectural support to this family of applications.

SOA-based reference architecture

In Chapter 3, we have provided a reference architecture that supports

general purpose functions used by context-aware applications. These

general purpose functions are described in Chapter 2. For example, context

source components are responsible for context gathering issues, such as

collecting context conditions from sensors or web services and eventually

aggregating these conditions in more complex context information. Action

provider components are responsible for executing and delivering services

as reactions to context changes or user input events. The coordinator

component realises the application behaviour that controls context sources

and action providers.

Since the components that constitute this reference architecture are

distributed in the environment, we have used the SOA approach to facilitate

their interoperability. In this way, components make use of each other‟s

services to achieve the goals of the application without being concerned

with the service implementation details. This is achieved in our reference

architecture by exposing the descriptions of the services offered by the

application components in a service registry. In Chapter 9, we have

proposed a platform-specific framework in which the coordinator

component is realised as a BPEL process. In this framework, action

provider components are exposed as web services and registered to a UDDI

registry in terms of their interface descriptions.

200 CHAPTER 10 CONCLUSIONS

Interaction patterns connected to the reference architecture

We have identified basic patterns of behaviour and used them as building

blocks to realise transformations between models at different abstraction

levels. These patterns represent interactions that are performed by

components of our reference architecture. In general, these patterns can be

used to speed up and facilitate the development of new context-aware

mobile applications based on this reference architecture, instead of building

them from scratch, which tends to be costly and time-consuming.

10.5 Automated Support for PIM Behaviour Model

Transformations

An important factor to speed up the development process of a software

application is to automate development tasks, possibly along the overall

development process. In this thesis, we addressed the automation of model

transformations at the PIM level of our methodology. In order to achieve

this, we have realised automatic model transformations, and also organised

the knowledge acquired in the process of automating these transformations

in order to make it available for reuse. Our contributions with regard to

automation and reuse aspects are briefly discussed below.

Automation

We have implemented the SStoSDRM behaviour refinement and the

SDRMtoSDCM behaviour synthesis transformations described in Chapters 6 to

8. These are transformations from a source model at a certain abstraction

level to a (more concrete) target model at a lower abstraction level. In

Chapter 6, we have implemented the SStoSDRM behaviour refinement using the

Medini QVT engine, which allowed us to define transformation rules in the

QVT Relation language defined by OMG. In Chapter 8, we have

implemented the SStoSDRM behaviour refinement and SDRMtoSDCM behaviour

synthesis using the ATL transformation language. Both the QVT and ATL

engines allowed us to execute our transformations in an Eclipse-based

environment. The emphasis of this thesis is not on pros and cons of

transformation languages and tools, so that in Chapters 6 and 8 we have

abstracted from the specific transformation languages chosen for

implementing the transformations, and we have shown the mappings of

source metamodel elements onto target metamodel elements only

schematically. However, we have learned that both ATL and QVT are

suitable languages for implementing refinement and synthesis

transformations like the ones presented in this thesis.

 FUTURE WORK 201

Reusability

The design knowledge acquired during the development of our

methodology is reusable and may be consolidated in terms of (1) artefacts

that can be straightforwardly reused when applying our methodology to the

development of similar applications, and (2) best practices that can be

reused to guide the definition of new development methodologies.

In Chapters 6 to 8 we have discussed behavioural patterns that are

reusable artefacts to be used as building blocks for creating complex

behaviours. We have also provided transformation rules based on these

patterns for automatic generation of executable behaviours from abstract

specifications. Both behavioural patterns and transformation rules are

tailored to a specific family of applications, namely context-aware mobile

applications, and can be directly reused for developing new applications in

this domain, instead of building them from scratch.

Concerning best practices, this thesis provides designers with guidelines

to define new methodologies based on principles such as separation of

concerns, systematic decomposition in abstraction levels, use of recurring

patterns, definition of model tranformations between different abstraction

levels, and the automation of these transformations.

10.6 Future work

We suggest the following directions for further research.

Case study development

We have identified the interaction patterns and developed the model

transformations provided in this work using the Live Contacts running

example. Starting with the results achieved with this running example, we

have generalised the interaction patterns and transformation rules in order

to create abstractions that can be used with other applications. However,

we did not applied our results to other applications. As part of future work,

the development of a case study based on a different context-aware mobile

application should be considered, possibly also in another application area.

Candidate areas could be, for example, health-care, government or

domotics. We foresee that the development of a new application using the

same reference architecture, interaction patterns and automated

transformations developed in this thesis should be beneficial in terms of

reduced development time, effort and costs compared to the development

time, effort and costs necessary to create a new application from scratch.

202 CHAPTER 10 CONCLUSIONS

Full automation

Although an important challenge in model-driven development consists of

achieving automation along the overall development process, we

acknowledge that full automation is probably impossible to achieve, at least

with currently available technology. Full automation would require full

composability, and full composability remains a difficult goal to achieve. In

this thesis, we have provided partial automatic support for the proposed

methodology, namely for the model transformations at the PIM level.

However, we did not address the automation of the transformation(s) from

PIM to PSM. Therefore, our work could be extended by providing

automated support also for this transformation, for example, using the

results from [111, 124], as initially investigated in Chapter 5. In this way,

the entire chain of transformation steps prescribed by our methodology

would be automated, bringing us a step forward towards the dream of

realising full automation.

Behaviour correctness

In Chapter 8, we have realised transformations that automatically refine

BPMN behavioural models at different abstraction levels, guaranteeing

correctness with the original application behaviour by construction.

However, we did not exploit behaviour correctness at a rigorous formal

level. The natural evolution of the work proposed in Chapter 8 should be

the integration of our methodology with techniques to formally prove the

equivalence of our BPMN models to formalisms that can be automatically

analise, such as, for example, Petri Nets. This could be done by applying the

results of [97-98, 107], as initially investigated in Chapter 5.

Interaction pattern abstractions

In our work, a basic interaction pattern represents an interaction that

involves two participants, which should be chosen among the set of

components of our SOA-based reference architecture, namely context

sources, user agent, coordinator, database, service trader, and action

providers. Therefore, interaction patterns are connected to the specific

reference architecture for context-aware mobile applications used in this

thesis. Further investigation should aim at generalising these interaction

patterns and apply minor adjustments in order to make them reusable also

with other references architectures.

Context manager component

The control component of the SOA-based reference architecture proposed

in this thesis consists of the coordinator component, which receives context

events and triggers actions to be executed as a consequence. Context events,

which consist of relevant changes in the user‟s environment, are provided to

 FUTURE WORK 203

the coordinator by dedicated context sources components. To support

interoperability between coordinator and context sources, we have defined

a context model, which consists of a conceptual model that represents context

information abstracting from any design and technological detail, such as

the way this context is sensed, provided, learned, produced, or used. Our

context model has been defined based on the Live Contacts running

example, and, therefore, includes some application-specific concepts.

However, this context model also includes a general part that can be reused

for various context-aware mobile applications. We have addressed this

interoperability aspect using a context expression evaluator component in our

previous work [131]. As part of future work, we recommend that the

design and implementation of a context manager component based on our

context model should be considered to allow interoperability between the

coordinator and context sources. To achieve this, the context manager

component should be able to receive context events subscriptions from the

coordinator, gather context information related to these subscriptions from

the proper context source, reason about this information, and, finally, send

events notifications to the coordinator.

References

1. Rehemtulla, M. and G. Hughes, Service Creation: Meeting the Product Lifecycle

Challenge in Product lifecycle management. 2006, IBM.

2. Russo, P., A Solid Foundation: an Integrated Architecture for Service Creation

Can Help Carriers Speed New Services to Market, in Connected Planet Online.

2009.

3. Lodge, F. (1998), Service creation. Lecture Notes in Computer Science

1430, 363-364.

4. Ubiquitous - Dictionary.com Page. Available from:

http://dictionary.reference

.com/browse/ubiquitous.

5. Pervasive - Dictionary.com Page. Available from: http://dictionary.reference.

com/browse/pervasive.

6. Naughton, B., Standardizing the Process of Service Creation and Delivery for

Telcos. www.pipelinepub.com, 2006. 3(12).

7. Watson, B., Service Creation Best Practices, in Stratecast. 2007, IBM.

8. Dobing, B. and J. Parsons (2005), Current Practices in the Use of UML.

Lecture Notes in Computer Science 3770, 2-11.

9. ObjectManagementGroup, MDA-Guide, Version 1.0.1. 2003: omg/03-06-

01.

10. Papazoglou, M., Service Oriented Computing. Communications of the ACM,

2003. 46(10): p. 25-28.

206 REFERENCES

11. McNeile, A. and N. Simons, Methods of Behaviour Modelling: A Commentary

on Behaviour Modelling Techniques for MDA, Metamaxim Ltd Home.

12. Cernosek, G., The Value of Modeling, in Rational Software, IBM.

13. Jochen, L., Models in Software Engineering: an Introduction. Software and

Systems Modeling 2003. 2(1): p. 5-14.

14. Scacchi, W., Process Models in Software Engineering, in Encyclopedia of Software

Engineering. 2002.

15. Metzger, A., A Systematic Look at Model Transformations, in Model-Driven

Software Development. 2005, Springer-Verlag. p. 19-33.

16. Bézivin, J., In Search of a Basic Principle for Model Driven Engineering.

UPGRADE, 2004. 2: p. 21-24.

17. Bézivin J. et al., Model Engineering for Complex Systems.

18. France, R. and Rumpe B., Model-driven Development of Complex Software: A

Research Roadmap.

19. Shaham-Gafny, Y. and S. Kremer-Davidson, MDD Enablement Tooling.

2004, RAD Technologies.

20. Model-Driven Architecture (MDA) Home. Available from:

http://www.omg.org/mda/.

21. Object Managment Group Home. Available from: http://www.omg.org/.

22. Object Management Group. Unified Modelling Language (UML) specification,

version 2.3 2010; Available from: http://www.omg.org/spec/UML/.

23. Object Management Group. XML Metadata Interchange (XMI) Specification

Available from: http://www.omg.org/spec/XMI/.

24. Object Management Group. Meta Object Facility (MOF) 2.0

Query/View/Transformation (QVT). 2011; Available from:

http://www.omg.org/spec/QVT/1.1.

25. Eclipse Foundation. The ATLAS Transformation Language. Available from:

http://www.eclipse.org/atl/.

26. Eclipse Modelling Framework (EMF) Project. Available from:

http://www.eclipse.org/modeling/emf/.

 REFERENCES 207

27. Gavreas, A., et al. (2004) Towards an MDA-based Development Methodology.

Lecture Notes in Computer Science, 230-240.

28. Cabot, J. Relationship between MDA, MDD and MDE. MOdeling LAnguages:

The portal for software modelers, analysts, designers and architects

(2009).

29. den Haan, J. MDA MDD MDE MDSD MDSE: help! The Enterprise

Architect: Building an Agile Enterprise (2008). Available from:

http://www.theenterprisearchitect.eu/archive/2008/06/11/mda-mdd-

mde-mdsd-mdse-help.

30. Favre, J.M. Towards a Basic Theory to Model Driven Engineering. in The 3rd

Workshop in Software Model Engineering. 2004.

31. Andrade Almeida, J.P., Model-Driven Design of Distributed Applications.

2006, University of Twente: Enschede, The Netherlands.

32. Object Management Group, CORBA Specification, version 3.1. 2008;

Available from: http://www.omg.org/spec/CORBA/.

33. W3C. World Wide Web Consortium: Web Services Architecture. 2004; Available

from: http://www.w3.org/TR/ws-arch/.

34. Object Management Group, Meta Object Facility (MOF) Core. 2006.

35. Harel, D. and B. Rumpe, Modeling Languages: Syntax, Semantics and All That

Stuff (or, What's the SEmantics of "Semantics"?). Computer 2004. 37(10): p.

64-72.

36. Mens, T. and P. van Gorp. A Taxonomy of Model Transformations. in The

International Workshop on Graph and Model Transformation (GraMoT) 2006:

Elsevier Science.

37. Northrop, C., Software Product Lines: Practices and Patterns. 2001: Addison-

Wesley Longman Publishing Co.

38. Brown, A.W. Rational Edge (2004); Available from: http://www.ibm.

com/developerworks/rational/library/3100.html.

39. IKV++Technologies. MediniQVT. Available from: http://www.ikv.de.

40. Henderson-Sellers, B., UML - the Good, the Bad or the Ugly? Perspectives

from a Panel of Experts. International Journal of Software and Systems

Modelling (SoSyM) 2005. 4(1): p. 4-13.

208 REFERENCES

41. Papazoglou Mike , et al., Service Oriented Computing Research Roadmap.

2006.

42. Thomas, E., et al. SOA manifesto. Available from: http://www.soa-

manifesto.org/.

43. Erl, T., SOA: Principles of Service Design. Service-Oriented Computing.

2007: Prentice Hall.

44. Java Remote Method Invocation (Java RMI) home. Available from:

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-

136424.html.

45. Jini Home. Available from: http://www.jini.org/wiki/Main_Page.

46. O‟Sullivan Justin, e.a., Service Description: A survey of the general nature of

services. 2002.

47. Papazoglou, M. and W.-J. van Den Heuvel, Service Oriented Design and

Development Methodology. International Journal of Web Engineering and

Technology (IJWET), 2006. 2(4).

48. Ferreira Pires, L., Architectural Notes: a Framework for Distributed Systems

Development, Ph.D. Thesis, University of Twente, the Netherlands, 1994.

49. Merriam-Webster Online. Available from: http://m-c.com.

50. Dockhorn Costa, P., Architectural Support for Context-Aware Applications: from

Context Models to Services Platforms, Ph.D. Thesis, University of Twente, the

Netherlands, 2007.

51. Dey, A.K., G.D. Abowd, and D. Salber, A Conceptual Framework and a

Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications.

Human-Computer Interaction, 2001. 16: p. 97-166.

52. A.K. Dey, G.D.A., D. Salber, A conceptual framework and a toolkit for

supporting the rapid prototyping of context-aware applications. Human-

Computer Interaction, 2001. 16: p. 97-166.

53. K. Henricksen, J.I. (2004) A software engineering framework for context-aware

pervasive computing. Proceedings of the 2th Conference on Pervasive

Computing and Communications, 77-86.

54. A. Ranganathan, R.H.C. (2003) A Middleware for context aware agents in

ubiquitous computing environments. Lecture Notes in Computer Science

2672, 143-161.

 REFERENCES 209

55. Henricksen, K. and J. Indulska (2004) A software engineering framework for

context-aware pervasive computing. Proceedings of the 2th Conference on

Oervasive Computing and Communications , 77-86.

56. Dockhorn Costa, P., L. Ferreira Pires, and M. van Sinderen. Architectural

PAtterns for Context-Aware Applications. in The 2nd International Workshop on

Ubiquitous Computing (IWUC), 2005.

57. Guizzardi, G., Ontological Foundations for Structural Conceptual Models, Ph.D.

Thesis, University of Twente, the Netherlands, 2005.

58. Gavreas A., B.M., Ferreira Pires L., Almeida J.P. (2004) Towards an MDA-

based Development Methodology. Lecture Notes in Computer Science, 230-

240.

59. Ferreira Pires L., Q.D., van Sinderen M., Vissers C., Architecture of

Distributed Systems, Lecture notes. 2007, University of Twente.

60. Live Contacts Home. Available from: http://livecontacts.telin.nl.

61. A-MUSE Project Home. Available from: http://www.freeband.nl/project.

cfm?language=en&id=489.

62. Object Management Group. Trading Object Services Specification, version 1.0.

2000; Available from: http://www.omg.org/spec/TRADE/.

63. OASIS. Universal Description Discovery and Integration (UDDI) project.

Available from: http://uddi.xml.org/specification.

64. Uchitel, S., G. Brunet, and M. Chechick. Behaviour Model Synthesis from

Properties and Scenarios in 29th International Conference on Software Engineering

(ICSE). 2007. Minneapolis, USA: IEEE Computer Society Press.

65. Giannakopoulou, D. and J. Magee. Fluent Model Checking for Event-Based

Systems. in 9th European Software Engineering Conference (ESEC 2003) and the

11th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE 2003). 2003. Finland: ACM Press.

66. ITU. Recommendation z.120: Message Sequence Charts. 2000.

67. Uchitel, S., J. Kramer, and J. Magee, eds. Incremental Elaboration of

Scenario-Based Specifications and Behaviour Models Using Implied Scenarios.

ACM Transactions on Software Engineering and Methodology. Vol. 13.

2004, ACM Press. 37-85.

210 REFERENCES

68. Imperial College London and University of Buenos Aires, Modal

Transition Systems Analyser (MTSA).

69. Imperial College London, Labelled Transition Systems Analyser (LTSA).

70. Foster, H., A Rigorous Approach to Engineering Web Service Compositions,

Ph.D. Thesis, Imperial College London, 2006.

71. Harel, D., Can Programming Be Liberated, Period?, in IEEE Computer. 2008,

IEEE Computer Society. p. 28-37.

72. Harel, D. and R. Marelli, Specifying and Executing Behavioral Requirements:

The Play-In/ Play-Out Approach, in Tecnical Report. 2001, The Weizmann

Institute of Science.

73. Brill, M., et al. Live Sequence Charts. in Integration of Software Specification

Techniques for Applications in Engineering. 2004: Springer.

74. Harel, D., et al. PlayGo: Towards a Comprehensive Tool for Scenario Based

Programming. in International Conference on Automated Software Engineering

(ASE). 2010. Antwerp, Belgium: ACM.

75. PlayGo Home. Available from: www.playgo.co.

76. AspectJ Home. Available from: http://www.eclipse.org/aspectj/.

77. Harel, D. and H. Kugler, Synthesizing State-Based Object Systems from LSC

Specifications. International Journal of Foundations of Computer Science,

2002. 13(1): p. 5-51.

78. Rhapsody Home. Available from: http://www-01.ibm.com/software/

awdtools/rhapsody.

79. Fujaba Tool Suite Home. Available from: http://www.fujaba.de.

80. Fischer, T., et al. (2000) Story Diagrams: a New Graph Rewrite Language

Based on the Unified Modeling Language and Java. Lecture Notes in

Computer Science 1764, 296-309.

81. Rozenberg, G., Handbook of Graph Grammars and Computing by Graph

Transformations. Foundations. Vol. 1. 1997: World Scientific Publishing

Co.

82. Engels, G., et al. From UML Activities to TAAL - Towards Behaviour-Preserving

Model Transformations in The 4th European Conference on Model Driven

 REFERENCES 211

Architecture - Foundations and Applications (ECMDA-FA). 2008. Lecture

Notes in Computer Science.

83. Kastenberg, H., A. Kleppe, and A. Rensink. Defining Object-Oriented

Execution Semantics using Graph Transformations. in Formal Methods for Open

Object-Based Distributed Systems (FMOODS). 2006: Springer-Verlag.

84. Rensink, A. The GROOVE Simulator: a Tool for State Space Generation in Fifth

Annual International Working Conference on Active Networks (AGTIVE 2003).

2003: Springer

85. Raedts, I., et al. A Software Framework for automated Verification. in 22nd

Annual Symposium on Applied Computing. 2007.

86. Raedts, I., et al. Transformation of BPMN Models for Behaviour Analysis. in 5th

International Workshop on Modelling, Simulation, Verification and Validation of

Enterprise Information Systems. 2007: INSTICC Press.

87. van Hee, K., R. Post, and L. Somers. Yet Another Smart Process EditoR. in

European Simulation and Modelling Conference. 2005.

88. W3C. XSL Transformations (XSLT) Version 2.0. 2007; Available from:

http://www.w3.org/TR/xslt20/.

89. Verbeek, H.M.W., T. Basten, and W.M.P. van der Aalst, Diagnosing

Workflow Processes using Woflan. The computer Journal, 2001. 44(4): p.

246 - 279.

90. Roch, S. and P. Starke, INA: I Integrieter Netzanalysator, Humboldt

Universitaet zu Berlin.

91. Schmidt, K. LoLA: a Low Level Analyser. in International Conference on

Application and Theory of Petri Nets and Other Models of Concurrency (ICATPN).

2000: Springer-Verlag.

92. Groote, J.F., et al., The Formal Specification Language mCRL2, in Methods for

Modelling Software Systems. 2007, Internationales Begegnungs- und

Forschungszentrum Informatik.

93. mCRL2 Home. Available from: http://www.mcrl2.org.

94. Object Management Group. BPMN Home. Available from:

http://www.omg.org/spec/BPMN.

212 REFERENCES

95. Object Management Group. BPMN 1.0 Specification Home. Available from:

http://www.bpmn.org/Documents/OMG_Final_Adopted_BPMN_1-

0_Spec_06-02-01.pdf.

96. Dijkman, R.M. BPMN. Available from: http://is.ieis.tue.nl/staff/rdijkman/

Homepage_Remco_Dijkman/BPMN.html.

97. Dijkman, R.M., M. Dumas, and C. Ouyang, Semantics and Analysis of

Business Process Models in BPMN. Information and Software Technology

(IST), 2008. 50(12): p. 1281-1294.

98. Dijkman, R.M. and P. Van Gorp. BPMN 2.0 Execution Semantics Formalized

as Graph Rewrite Rules. in International Workshop on BPMN. 2010.

99. van der Aalst, W.M.P. and A.H.M. Hofstede, YAWL: Yet Another Workflow

Language. Information Systems, 2004. 30(4): p. 245 - 275.

100. Billington, J., s. Christensen, and K. van de Hee, The Petri Net Markup

Language: Concepts, Technology and Tools, in Applications and Theory of Petri

Nets. 2003, Springer. p. 483 - 505.

101. van Dongen, B., et al., The ProM Framework: a New Era in Process Mining

Tool Support in Application and Theory of Petri Nets. 2005, Springer. p. 444 -

454.

102. WFMC, Workflow Management Coalition Standard: Workflow Process Definition

Interface - XML Process Definition Language (XPDL), in Technical Report. 2002,

Workflow Management Coalition.

103. Jakumeit, E., S. Buchwald, and M. Kroll, GrGen.NET. International

Journal on Software Tools for Technology Transfer (sTTT), 2010.

104. Ouyang, C., et al., Pattern-based Translation of BPMN Process Models to BPEL

Web Services. International Journal of Web Services Research (JWSR),

2007. 5(1): p. 42-62.

105. Jordan, D. and J. Evdemon. WebServices Business Process Execution Language

(WS-BPEL) Specification Version 2.0. 2007.

106. Mendling, J., K.B. Lassen, and U. Zdun, On the Transformation of Control

Flow between Block-Oriented and Graph-Oriented Process Modeling Languages.

International Journal of Business Process Integration and Management

(IJBPIM). Special Issue on Model-Driven Engineering of Executable

Business Process Models, 2008. 3(2): p. 96-108.

 REFERENCES 213

107. Lohmann, N., et al., Analyzing interacting WS-BPEL processes using flexible

model generation. Data and Knowledge Engineering, 2008. 64(1): p. 38-

54.

108. Massuthe, P. and K. Schmidt, An Operating Guideline Approach to the SOA.

Annals of Mathematics, Computing and Teleinformatics, 2005. 1(3): p.

35 - 43.

109. Tools4BPEL Home. Available from: http://www2.informatik.hu-

berlin.de/top/tools4bpel.

110. Fiona Home. Available from: http://www2.informatik.hu-

berlin.de/top/tools4bpel/fiona/.

111. Dirgahayu, T., Interaction Design in Service Compositions, Ph.D. Thesis,

University of Twente, The Netherlands, 2010.

112. Quartel, D., Action Relations. Basic Design Concepts for Behaviour Modelling

and Refinement, Ph.D. Thesis, University of Twente, The Netherlands,

1998.

113. ISDL Home. Available from: http://isdl.ctit.utwente.nl.

114. Combes, P., D. Harel, and H. Kugler, Modeling and Verification of a

Telecommunication Application Using Live Sequence Charts and the Play-Engine

Tool. Software and Systems Modeling, 2008. 7(2): p. 157-175.

115. Bontemps, Y., Automated Verification of State-Bases Specification against

Scenarios - a Srep Towards relating Inter-Obect to Intra-Object Specifications.

2001, Facultés Universitaires Notre-Dame de la Paix: Namur, Belgium.

116. Topçu, O., M. Adak, and H. Oguztüzün, Metamodeling Live Sequence Charts

for Code Generation. Software and Systems Modeling, 2009. 8(4): p. 567-

583.

117. PNML.org Home. Available from: http://www.pnml.org/grammar.php.

118. Uchitel, S. and J. Kramer. A Workbench for Synthesising Behaviour Models

from Scenarios. in 23rd IEEE/ACM International Conference on Software

Engineering (ICSE). 2001: ACM.

119. Klose, J., Live Sequence Charts: a Graphical Formalisms for the Specification of

Communication Behavior. 2003.

120. Kugler, H., et al. Temporal Logic for Scenario-Based Specifications, Proc. of the

214 REFERENCES

in The 11th Inter. Conf. on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS) 2005: Springer.

121. Kumar, R., E. Mercer, and A. Bunker. Improving Translation of Live

Sequence Charts to Temporal Logic. in The 7th International Conference on

Automated Verification of Critical Systems (AVoCS) 2007.

122. Brill, M., et al. Formal Verification of LSCs in the Development Process. in

Integration of Software Specification Techniques for Applications in Engineering.

2004: Springer.

123. Hausmann, J.H., Dynamic Meta Modelling, Ph.D. Thesis, University of

Paderborn, Germany, 2005.

124. Ouyang, C., et al., Pattern-based Translation of BPMN Process Models to BPEL

Web Services. International Journal of Web Services Research (JWSR),

2008. 5(1): p. 42-62.

125. Quartel, D. Simulation and Execution of Service Models Using ISDL. in

ACT4SOC. 2008: INSTICC Press.

126. Heerink, L. and D. Quartel, Domain Specific Language for Context-Aware

Mobile Services, in A-MUSE Project Deliverable. 2007.

127. Daniele, L., L. Ferreira Pires, and M. van Sinderen. An MDA-Based

Approach for Behaviour Modelling of Context-Aware Mobile Applications. in The

Fifth European Conference on Model-Driven Architecture Foundations and

Applications (ECMDA-FA). Lecture Notes in Computer Science, 2009.

128. Daniele, L., L. Ferreira Pires, and M. van Sinderen. Towards Automatic

Behavior Synthesis of a Coordinator Component for Context-Aware Mobile

Applications. in The 13th Enterprise Distributed Object Computing Conference

Workshops (EDOCW). 2009: IEEE Computer Society Press.

129. Business4Users (B4U) Project Home. Available from:

http://www.freeband.nl/kennisimpuls/projecten/b4u/ENindex.html.

130. Ter Hofte, G.H., et al. (2004) Context-Aware Communication with Live

Contacts. Conference Supplement of Computer Supported Cooperative

Work (CSCW 2004).

131. Daniele, L.M., L. Ferreira Pires, and M. van Sinderen. Context Handling in

a SOA Infrastructure for Context-Aware Applications. in The 2nd International

Workshop on Architectures, Concepts and Technologies for Service Oriented

Computing (ACT4SOC 2008). 2008. INSTICC Press.

 REFERENCES 215

132. Labelled Transition Systems Analyser (LTSA) Home. Available from:

http://www.doc.ic.ac.uk/ltsa.

133. Modal Transition Systems Analyser (MTSA) Home. Available from:

http://sourceforge.net/projects/mtsa/.

134. Signavio-Oryx Initiative Home. Available from:

http://www.signavio.com/en/academic.html.

135. jUDDI Home. Available from: http://ws.apache.org/juddi.

136. Goncalves da Silva, E.M., L. Ferreira Pires, and M. van Sinderen, Towards

Runtime Discovery, Selection and Composition of Semantic Services. Computer

communications, 2011. 34(2): p. 159 -168.

About the author

Laura Maria Daniele was born in Cagliari,

Italy, on the 20th of July 1980. She

obtained her high school diploma in the

humanistic area (History, Philosophy,

Italian, Latin, Greek grammar and

literature). Afterwards, she moved to the

technical area and studied Electronics at the

Department of Electrical and Electronic

Engineering at the University of Cagliari.

She graduated in 2006 and close to the

conclusion of her studies, she spent seven

months at the Architecture and Services of Network Applications (ASNA)

group at the University of Twente by means of the Socrates/Erasmus

exchange program. During this time she developed her master‟s thesis work

in the context of the Freeband AWARENESS project. In February 2007

she started her PhD research at the Centre of Telematics and Information

Technology (CTIT), University of Twente, as a member of the Software

Engineering group (also known as Twente Research & Education on

Software Engineering, TRESE). During her PhD work, she was involved in

the Freeband A-MUSE project. Her professional interests include model-

driven design methodologies, behaviour modelling techniques, model

transformations, service-oriented architectures and context-aware mobile

applications. She has authored several international publications and served

as a reviewer for international conferences and workshops.

Below is a list of her publications in reverse chronological order:

– Daniele, L.M., Ferreira Pires, L. and van Sinderen, M.J. (2010): Process-

Oriented Behavior Generation Using Interaction Patterns. In: 14th IEEE

International Enterprise Distributed Object Computing Conference

218 ABOUT THE AUTHOR

Workshops (EDOCW 2010), 25-29 Oct 2010, Vitoria, Brazil. pp. 15-

20. IEEE Computer Society.

– Daniele, L.M., Ferreira Pires, L. and van Sinderen, M.J. (2009): An

MDA-based approach for behaviour modelling of context-aware mobile

applications. In: Proceedings of the Fifth European Conference on

Model-Driven Architecture Foundations and Applications, ECMDA-FA

2009, 23-26 June 2009, Enschede, The Netherlands. pp. 206-220.

Lecture Notes in Computer Science 5562. Springer Verlag.

– Daniele, L.M., Ferreira Pires, L. and van Sinderen, M.J. (2009): Towards

automatic behavior synthesis of a coordinator component for context-aware mobile

applications. In: 13th Enterprise Distributed Object Computing

Conference Workshops, EDOCW 2009, 1-4 Sept 2009, Auckland, New

Zealand. pp. 140-147. IEEE Computer Society.

– Daniele, L.M., Goncalves da Silva, E.M., Ferreira Pires, L. and van

Sinderen, M.J. (2009): A SOA-based platform-specific framework for context-

aware mobile applications. In: Proceedings of the Second IFIP WG5.8

Workshop on Enterprise Interoperability, IWEI 2009, 13-14 Oct 2009,

Valencia, Spain. pp. 25-37. Lecture Notes in Business Information

Processing 38. Springer Verlag.

– Daniele, L.M., Ferreira Pires, L. and van Sinderen, M.J. (2008):

Interaction patterns for refining behaviour specifications of context-aware mobile

services. In: Joint Proceedings of the Workshops: IWUC, MDIES and

TCoB, 12 Jun 2008, Barcelona, Spain. pp. 64-76. INSTICC Press.

– Daniele, L.M., Ferreira Pires, L. and van Sinderen, M.J. (2008): Context

handling in a SOA infrastructure for mobile applications. In: Proceedings of

the 2nd International Workshop on Architectures, Concepts and

Technologies for Service Oriented Computing (ACT4SOC 2008), 5 July

2008, Porto, Portugal. pp. 27-37. INSTICC Press.

– Daniele, L.M., Dockhorn Costa, P. and Ferreira Pires, L. (2007):

Towards a rule-based approach for context-aware applications. In: Proceedings

of the 13th Open European Summer School and IFIP TC6.6

Workshop, EUNICE 2007, July 18-20, 2007, Enschede, The

Netherlands. pp. 33-43. Lecture Notes in Computer Science 4606.

Springer Verlag.

About the cover

This thesis discusses how to build software applications in a systematic way

using a methodology that divides the design phase, which is based on the

architecture of these applications, from the implementation phase, in which

this architecture is realised using concrete components of the real world.

Similarly, in construction engineering the realisation of a building is

preceded by a careful and proper design phase. Since I come from Italy,

which is a country with centuries of history and art, I thought it would be

nice to have in my cover an example of design and realisation of an Italian

historical building. Therefore, I asked the help of my sister Marzia, who is

an art historian and lover, and I explained her the main ideas of this thesis,

such as, for example, the use of patterns in the design and the importance

of selecting a suitable language for the design purpose. Her suggestion is

shown in the cover: the façade of Santa Maria Novella (1456-1470) in

Florence, designed by Leon Battista Alberti (1404-1472).

Santa Maria Novella

was built on the site of the

previous Santa Maria delle

Vigne (9
th

 century). In

1221, this site was

assigned to the Dominican

Order that decided to

build a new church, which

was then called Novella

(New). The construction

started around 1246 and

when the church was

finished, approximately

in 1360, only the lower

part of the façade was

completed. In 1456,

220 ABOUT THE COVER

Leon Battista Alberti

designed the upper part

of the façade on a

commission from the

local textile merchant

Giovanni di Paolo

Rucellai. The realisation

of the façade was

completed in 1470.

Leon Battista Alberti

was a Renaissance

humanist polymath. As

architect and writer, he

wrote the De Re

Aedificatoria, a treatise on

architecture based on

the book De Architectura

of the classical Roman writer Vitruvius. De Re Aedificatoria was the first

architectural treatise of the Renaissance and, after its publication in 1485,

became a major reference for architects. What a suitable reference also for

a thesis about (model-driven, service-oriented, reference) architectures!

Alberti regarded mathematics as the common ground of art and science,

and emphasised the role of symmetry, proportion, geometry and the

regularity of parts, like in the architecture of classical antiquity and,

particularly, ancient Roman architecture. This recalled to me the idea of

this thesis of using patterns as building blocks to facilitate the design and

development process. I found this idea perfectly represented in the design

of Santa Maria Novella shown in the (front) cover of this thesis.

One of the famous quotes of Alberti, together with the one in the back

of the cover, is that “a man can do all things if he will”. This quote summarises

the concept of universal man promoted by the Reinassance, which considers

humans empowered and limitless in their capability of development. In

other words, humans should embrace all kind of knowledge and develop

their abilities as fully as possible. I like this human-centric vision and I find

it relevant to this thesis, in which I refer to demanding users that are aware

of the opportunities offered by the continuously evolving technologies, and

to service providers that consequently have to offer a wide range of various,

enriched and personalised services to their users.

As final remark, this thesis is also about languages and I found very

interesting that Alberti was also a linguist, who wrote in Latin, but also

promoted the adoption of the vulgar Italian, from which the modern Italian

originated.

